Synthetic bismuth silicate nanostructures: Photocatalysts grown from silica aerogels precursors

Abstract

Bismuth silicate with two morphologies (nanoflowers/nanoplates) was successfully fabricated with silica aerogels via a hydrothermal method in polyvinylpyrrolidone (PVP)-mediated processes for the first time. The obtained nanomaterials were characterized using x-ray powder diffraction, scanning electron microscopy, the Brunauer-Emmett-Teller (BET) surface area analysis, and UV-vis diffuse reflectance spectroscopy. It was found that the concentration of PVP plays an important role in the formation of the hierarchical nanoflowers. The formation mechanism for this novel morphology was proposed on the basis of experimental results. Moreover, the photocatalytic performances of Bi2SiO5 nanoflowers/nanoplates were also investigated. The results revealed that Bi2SiO5 nanoflowers exhibited higher activity than Bi2SiO5 nanoplates due to its suitable morphology, higher BET surface area.

This is a preview of subscription content, access via your institution.

TABLE 1.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

References

  1. 1.

    A.T. Bell: The impact of nanoscience on heterogeneous catalysis. Science 299, 1688 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    S. Mann: Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 8, 781 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    J.B. Fei, Y. Cui, X.H. Yan, W. Qi, Y. Yang, K.W. Wang, Q. He, and J.B. Li: Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv. Mater. 20, 452 (2008).

    Article  Google Scholar 

  4. 4.

    D. Chen and J.H. Ye: Hierarchical WO3 hollow shells: Dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Funct. Mater. 18, 1922 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Wang, Q.S. Zhu, L. Tao, and X.W. Su: Controlled-synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries. J. Mater. Chem. 21, 9248 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    J. Liu, Z.P. Guo, W.J. Wang, Q.S. Huang, K.X. Zhu, and X.L. Chen: Heterogeneous ZnS hollow urchin-like hierarchical nanostructures and their structure-enhanced photocatalytic properties. Nanoscale 3, 1470 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    I. Koiwa, T. Kanehara, J. Mita, T. Iwabuchi, T. Osaka, S. Ono, and M. Maeda: Crystallization of Sr0.7Bi2.3Ta2O9+a thin films by chemical liquid deposition. Jpn. J. Appl. Phys. 35, 4946 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    S. Geoges, F. Goutenoire, and P. Lacorre: Crystal structure of lanthanum bismuth silicate Bi2-xLaxSiO5 (x~0.1). J. Solid State Chem. 179, 4020 (2006).

    Article  Google Scholar 

  9. 9.

    R.G. Chen, J.H. Bi, L. Wu, W.J. Wang, Z.H. Li, and X.Z. Fu: Template-free hydrothermal synthesis and photocatalytic performances of novel Bi2SiO5 nanoplates. Inorg. Chem. 48, 9072 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    P.Y. Zhang, J.C. Hu, and J.L. Li: Controllable morphology and photocatalytic performance of bismuth silicate nanobelts/nanoplates. RSC Adv. 1, 1072 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    L. Zhang, W.Z. Wang, S.M. Sun, J.H. Xu, M. Shang, and J. Ren: Hybrid Bi2SiO5 mesoporous microspheres with light response for environment decontamination. Appl. Catal., B. 100, 97 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    J. Sato, N. Saito, H. Nishiyama, and Y. Inoue: New photocatalyst group for water decomposition of RuO2-loaded p-block metal (In, Sn, and Sb) oxides with d10 configuration. J. Phys. Chem. B. 105 (26), 6061 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    J. Sato, N. Satio, H. Nishiyama, and Y. Inoue: Photocatalytic water decomposition by RuO2-loaded antimonates, M2Sb2O7 (M=Ca, Sr), CaSb2O6 and NaSbO3, with d10 configuration. J. Photochem. Photobiol., A 148, 85 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    J. Sato, K. Ikarashi, H. Kobayshi, S. Satio, H. Nishiyama, and Y. Inoue: Photocatalytic activity for water decomposition of RuO2-dispersed Zn2GeO4 with d10 configuration. J. Phys. Chem. B. 108, 4369 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    H. Kadowaki, J. Sato, H. Kobayashi, N. Satio, H. Nishiyama, Y. Simodaira, and Y. Inoue: Photocatalytic activity of the RuO2-dispersed composite p-block metal oxide LilnGeO4 with d10-d10 configuration for water decomposition. J. Phys. Chem. B. 109, 22995 (2005).

    CAS  Article  Google Scholar 

  16. 16.

    Y.D. Hou, L. Wu, X.C. Wang, Z.X. Ding, Z.H. Li, and X.Z. Fu: Photocatalytic performance of a-, ß-, and ?-Ga2O3 for the destruction of volatile aromatic pollutants in air. J. Catal. 250, 12 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    J.J. Zhu, J.M. Xie, X.M. Lü, and D.L. Jiang: Synthesis and characterization of superhydrophobic silica and silica/titania aerogels by sol-gel method at ambient pressure. Colloids Surf., A 342, 97 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    J.J. Zhu, J.M. Xie, M. Chen, D.L. Jiang, and D. Wu: Low temperature synthesis of anatase rare earth doped titania-silica photocatalyst and its photocatalytic activity under solar light. Colloids Surf., A 355, 178 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    J.J. Zhu, J.M. Xie, M. Chen, and D.L. Jiang: Low temperature preparation and visible light induced photocatalytic activity of europium doped hydrophobic anatase TiO2-SiO2 photocatalysts. J. Nanosci. Nanotech. 10, 1 (2010).

    Article  Google Scholar 

  20. 20.

    K. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto: Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol., A. 134, 139 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    Q. Xiao, Z.C. Si, J. Zhang, C. Xiao, and X.K. Tan: Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J. Hazard. Mater. 150, 62 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    A.M. Zheng, S.B. Liu, and F. Deng: Chemoselectivity during propene hydrogenation reaction over H-ZSM-5 zeolite: Insights from theoretical calculations. Microporous Mesoporous Mater. 121, 158 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    A. Bulgac: Local density approximation for systems with pairing correlations. Phys. Rev. C. 65, 051305 (2002).

    Article  Google Scholar 

  24. 24.

    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter. 14, 2717 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    D. San: Materials Studio, Version 4.0 (Accelrys Inc., San Diego, CA, 2006).

    Google Scholar 

  26. 26.

    Y. Zheng, F. Duan, M. Chen, and Y. Xie: Synthetic Bi2O2CO3 nanostructures: Novel photocatalyst with controlled special surface exposed. J. Mol. Catal. A 317, 34 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    C. Pacholski, A. Kornowski, and H. Weller: Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 41, 1188 (2002).

    CAS  Article  Google Scholar 

  28. 28.

    X.J. Dai, Y.S. Luo, S.Y. Fu, W.Q. Chen, and Y. Lu: Facile hydrothermal synthesis of 3D hierarchical Bi2SiO5 nanoflowers and their luminescent properties. Solid State Sci. 12, 637 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    L.S. Cavalcate, J.C. Sczancoski, M.S. Li, E. Longo, and J.A. Varela: ß-ZnMoO4 microcrystals synthesized by the surfactant-assisted hydrothermal method: Growth process and photoluminescence properties. Colloids Surf., A 396, 346 (2012).

    Article  Google Scholar 

  30. 30.

    H.C. Zeng: Ostwald ripening: A synthetic approach for hollow nanomaterials. Curr. Nanosci. 3, 177 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    L. Saravanan, S. Diwakar, R. Mohankumar, A. Pandurangan, and R. Jayavel: Synthesis, structural and optical properties of PVP encapsulated CdS nanoparticles. Nanomater. Nanotechnol. 1, 42 (2011).

    CAS  Article  Google Scholar 

  32. 32.

    X.J. Shi, X. Chen, X.L. Chen, S.M. Zhou, S.Y. Lou, Y.Q. Wang, and L. Yuan: PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity. Chem. Eng. J. 222, 120 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    D. Li and Y.F. Zhu: Synthesis of CdMoO4 microspheres by self-assembly and photocatalytic performances. CrystEngComm 14, 1128 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    H.B. Fu, C.S. Pan, W.Q. Yao, and Y.F. Zhu: Visible-light-induced degradation of Rhodamine B by nanosized Bi2WO6. J. Phys. Chem. B. 109, 22432 (2005).

    CAS  Article  Google Scholar 

  35. 35.

    D.F. Ollis: Contamination degradation in water. Environ. Sci. Technol. 19, 480 (1985).

    CAS  Article  Google Scholar 

  36. 36.

    C.L. Yu, Q. Shu, and Z.P. Xie: Preparation, characterization of Ag/BiOX(Cl,Br,I) composite photocatalysts and their photocatalytic performance. Acta Phys. Chim. Sin. 28, 647 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    H. Huang, H.F. Chen, Y. Xia, X.Y. Tao, Y.P. Gan, X.X. Weng, and W.K. Zhang: Controllable synthesis and visible-light-responsive photocatalytic activity of Bi2WO6 fluffy microsphere with hierarchical architecture. J. Colloid Interface Sci. 370, 132 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (Grant No. 21003065), Natural Science Foundation of Jiangsu Province (Grant No. BK2010166), Natural Science Foundation of Jiangsu Provincial Department of Education (Grant No. 11KJB430004), Scientific Innovation Research of College Graduate in Jangsu Province (Grant No. CXZZ12 0682), Social Development Foundation of Zhenjiang (Grant Nos. SH2011005 and SH2012011), Industry Technology Foundation of Zhenjiang, China (Grant No. GY2012017) and Research Foundation for Talented Scholars of Jiangsu University (Grant No. 10JDG133).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jimin Xie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wei, W., Xie, J., Meng, S. et al. Synthetic bismuth silicate nanostructures: Photocatalysts grown from silica aerogels precursors. Journal of Materials Research 28, 1658–1668 (2013). https://doi.org/10.1557/jmr.2013.65

Download citation