Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films

Abstract

Sputter-deposited epitaxial (111) and (110) Ag films have high-density nanotwins with respective twin boundary orientations perpendicular and angled to the growth direction. Twin density in as-deposited (111) Ag films is much greater than in (110) films, leading to higher hardness in the (111) films. Annealing up to 800 °C (homologous temperature of 0.85 Tm) leads to increased twin thickness, although the average twin thickness remains < 100 nm in both systems. Twinned volume fraction falls dramatically in annealed (110) films but remains constant at ~50% in (111) films. The mechanisms leading to the elimination of nanotwins in (110) films and their remarkable stability in (111) films at elevated temperatures are discussed. Coarsening and elimination of twins result in hardness reduction after annealing. The variety of microstructures achieved via annealing allows for the introduction of a strengthening model considering both twin and grain boundaries.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

References

  1. 1.

    L. Lu, Y.F. Shen, M. Dao, and S. Suresh: Strain rate sensitivity of Cu with nanoscale twins. Scr. Mater. 55 (4), 319 (2006).

    Article  CAS  Google Scholar 

  2. 2.

    S. Suresh, M. Dao, L. Lu, and Y.F. Shen: Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 54 (20), 5421 (2006).

    Article  CAS  Google Scholar 

  3. 3.

    S. Suresh, L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, and K. Lu: Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53 (7), 2169 (2005).

    Article  CAS  Google Scholar 

  4. 4.

    J.R. Weertman, C.J. Shute, B.D. Myers, S. Xie, T.W. Barbee, and A.M. Hodge: Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning. Scr. Mater. 60 (12), 1073 (2009).

    Article  CAS  Google Scholar 

  5. 5.

    J.R. Weertman, C.J. Shute, B.D. Myers, S. Xie, S.Y. Li, T.W. Barbee, and A.M. Hodge: Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins. Acta Mater. 59 (11), 4569 (2011).

    Article  CAS  Google Scholar 

  6. 6.

    O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley, and X. Zhang: Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93 (8), 083108-083108-3 (2008).

  7. 7.

    L. Lu, X. Chen, X. Huang, and K. Lu: Revealing the maximum strength in nanotwinned copper. Science 323 (5914), 607 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    O. Anderoglu, A. Misra, F. Ronning, H. Wang, and X. Zhang: Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films. J. Appl. Phys. 106 (2), 024313-024313-9 (2009).

  9. 9.

    X. Zhang, A. Misra, H. Wang, J.G. Swadener, A.L. Lima, M.F. Hundley, and R.G. Hoagland: Thermal stability of sputter-deposited 330 austenitic stainless-steel thin films with nanoscale growth twins. Appl. Phys. Lett. 87 (23), 233116-233116-3 (2005).

  10. 10.

    K. Lu, L. Lu, and S. Suresh: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324 (5925), 349 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304 (5669), 422 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    D. Bufford, X. Zhang, and H. Wang: High strength, epitaxial nanotwinned Ag films. Acta Mater. 59 (1), 93 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84 (7), 1096 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    X. Zhang, A. Misra, H. Wang, T.D. Shen, M. Nastasi, T.E. Mitchell, J.P. Hirth, R.G. Hoagland, and J.D. Embury: Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Mater. 52 (4), 995 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    P. Gu, M. Dao, R.J. Asaro, and S. Suresh: A unified mechanistic model for size-dependent deformation in nanocrystalline and nanotwinned metals. Acta Mater. 59 (18), 6861 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    C.C. Koch, D.G. Morris, K. Lu, and A. Inoue: Ductility of nanostructured materials. MRS Bull. 24 (2), 54 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    O. Anderoglu, A. Misra, J. Wang, R.G. Hoagland, J.P. Hirth, and X. Zhang: Plastic flow stability of nanotwinned Cu foils. Int. J. Plast. 26 (6), 875 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang: Influence of slip transmission on the migration of incoherent twin boundaries in epitaxial nanotwinned Cu. Scr. Mater. 64 (2), 149 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    N. Li, J. Wang, A. Misra, X. Zhang, J.Y. Huang, and J.P. Hirth: Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 59 (15), 5989 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Design of stable nanocrystalline alloys. Science 337 (6097), 951 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    L.E. Murr: Interfacial Phenomena in Metals and Alloys (Addison-Wesley Pub. Co., Adv. Book Program, London, 1975).

    Google Scholar 

  22. 22.

    J.P. Hirth and J. Lothe: Theory of Dislocations (Wiley, New York, 1982).

    Google Scholar 

  23. 23.

    O. Anderoglu, A. Misra, H. Wang, and X. Zhang: Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103 (9), 094322-094322-6 (2008).

  24. 24.

    X. Zhang and A. Misra: Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scr. Mater. 66 (11), 860 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    J. Wang, O. Anderoglu, J.P. Hirth, A. Misra, and X. Zhang: Dislocation structures of Sigma 3 112 twin boundaries in face centered cubic metals. Appl. Phys. Lett. 95 (2), 021908-021908-3 (2009).

  26. 26.

    D.L. Medlin, G.H. Campbell, and C.B. Carter: Stacking defects in the 9R phase at an incoherent twin boundary in copper. Acta Mater. 46 (14), 5135 (1998).

    CAS  Article  Google Scholar 

  27. 27.

    J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, and J.P. Hirth: Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58 (6), 2262 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    L. Liu, J. Wang, S.K. Gong, and S.X. Mao: High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag. Phys. Rev. Lett. 106 (17), 175504 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    N. Li, J. Wang, X. Zhang, and A. Misra: In-situ TEM study of dislocation-twin boundaries interaction in nanotwinned Cu films. JOM 63 (9), 62 (2011).

    Google Scholar 

  30. 30.

    L. Xu, D. Xu, K.N. Tu, Y. Cai, N. Wang, P. Dixit, J.H.L. Pang, and J.M. Miao: Structure and migration of (112) step on (111) twin boundaries in nanocrystalline copper. J. Appl. Phys. 104 (11), 113717-113717-5 (2008).

  31. 31.

    C.B. Carter, D.L. Medlin, J.E. Angelo, and M.J. Mills: The 112 lateral twin boundary in FCC materials. Mater. Sci. Forum207–212 (1996).

    Google Scholar 

  32. 32.

    T.C. Nason, G.R. Yang, K.H. Park, and T.M. Lu: Study of silver diffusion into Si(111) and Sio2 at moderate temperatures. J. Appl. Phys. 70 (3), 1392 (1991).

    CAS  Article  Google Scholar 

  33. 33.

    L. Weber: Equilibrium solid solubility of silicon in silver. Metall. Mater. Trans. A. 33 (4), 1145 (2002).

    Article  Google Scholar 

  34. 34.

    P.Y. Chevalier: Thermodynamic evaluation of the Ag-Si system. Thermochim. Acta 130, 33 (1988).

    CAS  Article  Google Scholar 

  35. 35.

    S.J. Rothman, N.L. Peterson, and J.T. Robinson: Isotope effect for self-diffusion in single crystals of silver. Phys. Status Solidi. 39 (2), 635 (1970).

    CAS  Article  Google Scholar 

  36. 36.

    J. Bihr, H. Mehrer, and K. Maier: Comparison between microsectioning studies of low-temperature self-diffusion in silver. Phys. Status Solidi A. 50 (1), 171 (1978).

    CAS  Article  Google Scholar 

  37. 37.

    P. Varotsos and K. Alexopoulos: Calculation of diffusion-coefficients at any temperature and pressure from a single measurement. 1. Self-diffusion. Phys. Rev. B. 22 (6), 3130 (1980).

    CAS  Article  Google Scholar 

  38. 38.

    D. Hull and D.J. Bacon: Introduction to Dislocations, 4th ed. (Butterworth Heinemann, Boston, 2001).

    Google Scholar 

  39. 39.

    L.M. Clarebro, R.L. Segall, and M.H. Loretto: Faulted defects in quenched copper and silver. Philos. Mag. 13 (126), 1285 (1966).

    Article  Google Scholar 

  40. 40.

    G.M. Pharr and W.C. Oliver: Nanoindentation of silver-relations between hardness and dislocation-structure. J. Mater. Res. 4 (1), 94 (1989).

    CAS  Article  Google Scholar 

  41. 41.

    D. Christopher, R. Smith, and A. Richter: Atomistic modelling of nanoindentation in iron and silver. Nanotechnology 12 (3), 372 (2001).

    CAS  Article  Google Scholar 

  42. 42.

    D.C. Jang, X.Y. Li, H.J. Gao, and J.R. Greer: Deformation mechanisms in nanotwinned metal nanopillars. Nat. Nanotechnol. 7 (9), 594 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    B.N. Singh, A.J.E. Foreman, and H. Trinkaus: Radiation hardening revisited: Role of intracascade clustering. J. Nucl. Mater. 249 (2-3), 103 (1997).

    CAS  Article  Google Scholar 

  44. 44.

    D.B. Williams and C.B. Carter: Transmission Electron Microscopy: A Textbook for Materials Science (Plenum, New York, 1996), pp. 321–322.

    Google Scholar 

  45. 45.

    G.I. Taylor: The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc. R. Soc. London, Ser. A. 145 (855), 362 (1934).

    CAS  Article  Google Scholar 

  46. 46.

    M.L. Grossbeck, P.J. Maziasz, and A.F. Rowcliffe: Modeling of strengthening mechanisms in irradiated fusion-reactor 1st wall alloys. J. Nucl. Mater. 191, 808 (1992).

    Article  Google Scholar 

  47. 47.

    M. Mata, M. Anglada, and J. Alcala: Contact deformation regimes around sharp indentations and the concept of the characteristic strain. J. Mater. Res. 17 (5), 964 (2002).

    CAS  Article  Google Scholar 

  48. 48.

    D. Tabor: The Hardness of Metals (Oxford University Press, Oxford, UK, 2000), pp. 105.

    Google Scholar 

  49. 49.

    M.H. Zhao, W.S. Slaughter, M. Li, and S.X. Mao: Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Mater. 51 (15), 4461 (2003).

    CAS  Article  Google Scholar 

  50. 50.

    A.V. Panin, A.R. Shugurov, and K.V. Oskomov: Mechanical properties of thin Ag films on a silicon substrate studied using the nanoindentation technique. Phys. Solid State 47 (11), 2055 (2005).

    CAS  Article  Google Scholar 

  51. 51.

    Y.F. Cao, S. Allameh, D. Nankivil, S. Sethiaraj, T. Otiti, and W. Soboyejo: Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: Effects of grain size and film thickness. Mater. Sci. Eng., A 427 (1-2), 232 (2006).

    Article  CAS  Google Scholar 

  52. 52.

    Y.Q. Fu, C. Shearwood, B. Xu, L.G. Yu, and K.A. Khor: Characterization of spark plasma sintered Ag nanopowders. Nanotechnology. 21 (11), 115707 (2010).

    CAS  Article  Google Scholar 

  53. 53.

    R.J. Asaro and S. Suresh: Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins. Acta Mater. 53 (12), 3369 (2005).

    CAS  Article  Google Scholar 

  54. 54.

    P. Gu, B.K. Kad, and M. Dao: A modified model for deformation via partial dislocations and stacking faults at the nanoscale. Scr. Mater. 62 (6), 361 (2010).

    CAS  Article  Google Scholar 

  55. 55.

    J.L. McCall: Practical applications of quantitative metallography: A symposium (American Society for Testing and Materials, Ann Arbor, MI, 1984).

    Google Scholar 

  56. 56.

    M.D. Merz and S.D. Dahlgren: Tensile-strength and work-hardening of ultrafine-grained high-purity copper. J. Appl. Phys. 46 (8), 3235 (1975).

    CAS  Article  Google Scholar 

  57. 57.

    A. Misra, J.P. Hirth, and R.G. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53 (18), 4817 (2005).

    CAS  Article  Google Scholar 

  58. 58.

    X. Zhang, A. Misra, H. Wang, A.L. Lima, M.F. Hundley, and R.G. Hoagland: Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films. J. Appl. Phys. 97 (094302), 5 (2005).

    Google Scholar 

  59. 59.

    B. Zhu, R.J. Asaro, P. Krysl, and R. Bailey: Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater. 53 (18), 4825 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support by NSF-DMR metallic materials and nanostructures program under grant no 0644835. Access to the microscopes at the Microscopy and Imaging Center at Texas A&M University is also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haiyan Wang.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bufford, D., Wang, H. & Zhang, X. Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films. Journal of Materials Research 28, 1729–1739 (2013). https://doi.org/10.1557/jmr.2013.50

Download citation