Effect of microwave processes on the energy-storage properties of barium strontium titanate glass ceramics


Barium strontium titanate (BST) glass-ceramics were fabricated via controlled crystallization with different crystallization routes. Effects of the microwave crystallization and microwave treatment on the microstructure and energy storage properties of the glass-ceramics were systematically investigated. Results showed that microwave crystallization can increase the dielectric constant. In addition, it was found that the microwave process had little impact on the crystallinity (about 90 wt%), but preferred the crystallization of SrAl4O7. Most importantly, the dielectric breakdown strength (BDS) of the glass ceramics was significantly improved from 561.3 to 791.4 kV/cm by the microwave crystallization. And it can be further enhanced to 900.0 kV/cm by conventional crystallization combined with microwave treatment. The corresponding energy densities of samples derived from the microwave processes were increased to 1.05 and 1.13 J/cm3, respectively, compared with the sample fabricated by the conventional crystallization route (0.47 J/cm3).

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.


  1. 1.

    J. Huang, Y. Zhang, T. Ma, H. Li, and L. Zhang: Correlation between dielectric breakdown strength and interface polarization in barium strontium titanate glass ceramics. Appl. Phys. Lett. 96(4), 042902 (2010).

    Article  Google Scholar 

  2. 2.

    J. Chen, Y. Zhang, C. Deng, X. Dai, and L. Li: Effect of the Ba/Ti ratio on the microstructures and dielectric properties of barium titanate‐based glass–ceramics. J. Am. Ceram. Soc. 92(6), 1350 (2009).

    CAS  Article  Google Scholar 

  3. 3.

    E.P. Gorzkowski, M.J. Pan, B.A. Bender, and C. Wu: Effect of additives on the crystallization kinetics of barium strontium titanate glass–ceramics. J. Am. Ceram. Soc. 91(4), 1065 (2008).

    CAS  Article  Google Scholar 

  4. 4.

    A. Herczog: Microcrystalline BaTiO3 by crystallization from glass. J. Am. Ceram. Soc. 47(3), 107 (1964).

    CAS  Article  Google Scholar 

  5. 5.

    J-J. Shyu and C-H. Chen: Sinterable ferroelectric glass-ceramics containing (Sr, Ba)Nb2O6 crystals. Ceram. Int. 29(4), 447 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    K. Kageyama and J. Takahashi: Tunable microwave properties of barium titanate‐based ferroelectric glass‐ceramics. J. Am. Ceram. Soc. 87(8), 1602 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    B. Wu, L. Zhang, and X. Yao: Low temperature sintering of BaxSr1−xTiO3 glass-ceramic. Ceram. Int. 30(7), 1757 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    B. Zhang, X. Yao, L. Zhang, and J. Zhai: Effect of sintering condition on the dielectric properties of (Ba, Sr)TiO3 glass-ceramic. Ceram. Int. 30(7), 1773 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Zhang, J. Huang, T. Ma, X. Wang, C. Deng, and X. Dai: Sintering temperature dependence of energy‐storage properties in (Ba, Sr) TiO3 glass–ceramics. J. Am. Ceram. Soc. 94(6), 1805 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    M. Yasuoka, Y. Nishimura, T. Nagaoka, and K. Watari: Influence of different methods of controlling microwave sintering. J. Therm. Anal. Calorim. 83(2), 407 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    B. Vaidhyanathan, D.K. Agrawal, and R. Roy: Microwave‐assisted synthesis and sintering of NZP compounds. J. Am. Ceram. Soc. 87(5), 834 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    B. Vaidhyanathan, M. Ganguli, and K. Rao: A novel method of preparation of inorganic glasses by microwave irradiation. J. Solid State Chem. 113(2), 448 (1994).

    CAS  Article  Google Scholar 

  13. 13.

    J-M. Wu and H-L. Huang: Microwave properties of zinc, barium and lead borosilicate glasses. J. Non-Cryst. Solids 260(1), 116 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    N. Hémono, S. Chenu, R. Lebullenger, J. Rocherullé, V. Kéryvin, and A. Wattiaux: Microwave synthesis and physical characterization of tin (II) phosphate glasses. J. Mater. Sci. 45(11), 2916 (2010).

    Article  Google Scholar 

  15. 15.

    S. Chenu, R. Lebullenger, and J. Rocherullé: Microwave synthesis and properties of NaPO3–SnO–Nb2O5 glasses. J. Mater. Sci. 47(11), 4632 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    S. Das, A.K. Mukhopadhyay, S. Datta, and D. Basu: Prospects of microwave processing: An overview. Bull. Mater. Sci. 31(7), 943 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    R. Wroe and A. Rowley: Evidence for a non-thermal microwave effect in the sintering of partially stabilized zirconia. J. Mater. Sci. 31(8), 2019 (1996).

    CAS  Article  Google Scholar 

  18. 18.

    M. D’arrigo, C. Siligardi, C. Leonelli, J. So, and H. Kim: Evolution of macropores in a glass-ceramic under microwave and conventional sintering. J. Porous Mater. 9(4), 299 (2002).

    Article  Google Scholar 

  19. 19.

    B.H. Toby: EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34(2), 210 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    A.C. Larson and R.B. Von Dreele: General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR, Regents of the University of California, 2004; pp. 86–748.

    Google Scholar 

  21. 21.

    H. Ming and S. Hua: Quantitative analysis of crystalline phases in CaO-B2O3-SiO2 glass-ceramics by full spectrum fitting method and peak separation method. J. Chengdu Electromechan. Coll. 15, 6 (2012).

    Google Scholar 

  22. 22.

    J. Takahashi, H. Nakano, and K. Kageyama: Fabrication and dielectric properties of barium titanate-based glass ceramics for tunable microwave LTCC application. J. Eur. Ceram. Soc. 26(10), 2123 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    M. Capron and A. Douy: Strontium dialuminate SrAl4O7: Synthesis and stability. J. Am. Ceram. Soc. 85(12), 3036 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    M. Oghbaei and O. Mirzaee: Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd. 494(1–2), 175 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    A. Ran, L. Wen, and L. Wen-zhong: Effect of H3BO3 on phase transition and microwave dielectric properties of BaAl2Si2O8 ceramics. J. Synth. Cryst. 41, 305 (2012).

    Google Scholar 

  26. 26.

    C. Hu and P. Liu: Preparation and microwave dielectric properties of SiO2 ceramics by aqueous sol–gel technique. J. Alloys Compd. 559(0), 129 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    X. Wang, Y. Zhang, X. Song, Z. Yuan, T. Ma, Q. Zhang, C. Deng, and T. Liang: Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc. 32(3), 559 (2012).

    CAS  Article  Google Scholar 

  28. 28.

    M. Touzin, D. Gœuriot, H-J. Fitting, C. Guerret-Piecourt, D. Juvé, and D. Tréheux: Relationships between dielectric breakdown resistance and charge transport in alumina materials—Effects of the microstructure. J. Eur. Ceram. Soc. 27(2), 1193 (2007).

    CAS  Article  Google Scholar 

  29. 29.

    E. Barsoukov and J.R. Macdonald: Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed. (John Wiley & Sons, Inc. Hoboken, New Jersey, 2005).

    Google Scholar 

  30. 30.

    E. Gorzkowski, M-J. Pan, B. Bender, and C. Wu: Glass-ceramics of barium strontium titanate for high energy density capacitors. J. Electroceram. 18(3–4), 269 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    A. Whittaker: Diffusion in microwave-heated ceramics. Chem. Mater. 17(13), 3426 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    A.L. Young, G.E. Hilmas, S.C. Zhang, and R.W. Schwartz: Mechanical vs. electrical failure mechanisms in high voltage, high energy density multilayer ceramic capacitors. J. Mater. Sci. 42(14), 5613 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    A. Young, G. Hilmas, S.C. Zhang, and R.W. Schwartz: Effect of liquid‐phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc. 90(5), 1504 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    E. Beauchamp: Effect of microstructure on pulse electrical strength of MgO. J. Am. Ceram. Soc. 54(10), 484 (1971).

    CAS  Article  Google Scholar 

Download references


The authors would like to acknowledge the support from National Key Fundamental Research Program (2009CB623302).

Author information



Corresponding author

Correspondence to Bo Shen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, J., Tang, L., Shen, B. et al. Effect of microwave processes on the energy-storage properties of barium strontium titanate glass ceramics. Journal of Materials Research 29, 288–293 (2014). https://doi.org/10.1557/jmr.2013.386

Download citation