Lightweight and stiff cellular ceramic structures by ice templating

Abstract

Porous, strong, and stiff ceramic materials are required for a range of technical applications, involving for instance, liquid or gas flow. Natural materials such as wood can provide useful structural guidelines for the optimal microstructural design, although only few processing routes are able to turn these guidelines into actual materials. We illustrate here, how ice templating of anisotropic particle suspensions can be modified to obtain a honeycomb structure with pores of 30 µm diameter. The growth of ice crystals in the slurry induces self-assembly of the anisotropic particles, leading to relatively thin walls (10 µm). Because large anisotropic particles are difficult to sinter, a glassy phase was introduced to facilitate this densification step and then to further reduce the walls’ porosity. Young’s modulus and compressive strength were both improved by the addition of a glassy phase by an order of magnitude due to the denser walls. These macroporous materials are more robust and stiff than materials with an equivalent morphology, while offering a simple alternative to the current wood replica processing routes.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE I.

References

  1. 1.

    L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge University Press, 1999), p. 532.

    Google Scholar 

  2. 2.

    A. Da Silva and S. Kyriakides: Compressive response and failure of balsa wood. Int. J. Solids Struct. 44, 8685–8717 (2007).

    Article  Google Scholar 

  3. 3.

    M. Scheffler and P. Colombo: Cellular Ceramics: Structure, Manufacturing, Properties and Applications (Wiley-VCH, Weinheim, 2005), p. 670.

    Google Scholar 

  4. 4.

    T. Isobe, Y. Kameshima, A. Nakajima, K. Okada, and Y. Hotta: Gas permeability and mechanical properties of porous alumina ceramics with unidirectionally aligned pores. J. Eur. Ceram. Soc. 27, 53–59 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    P. Greil, T. Lifka, and A. Kaindl: Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties. J. Eur. Ceram. Soc. 18, 1975–1983 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    E. Vogli, H. Sieber, and P. Greil: Biomorphic SiC-ceramic prepared by Si-vapor phase infiltration of wood. J. Eur. Ceram. Soc. 22, 2663–2668 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    C.R. Rambo: Microcellular Al2O3 ceramics from wood for filter applications. J. Am. Ceram. Soc. 91, 852–859 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    A.R. Studart, U.T. Gonzenbach, E. Tervoort, and L.J. Gauckler: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89, 1771–1789 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    S. Deville: Ice templating, freeze casting: Beyond materials processing. J. Mater. Res. 28, 1–18 (2013).

    Article  Google Scholar 

  10. 10.

    C. Hong, X. Zhang, J. Han, J. Du, and W. Han: Ultra-high-porosity zirconia ceramics fabricated by novel room-temperature freeze-casting. Scr. Mater. 60, 563–566 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    Y-W. Moon, K-H. Shin, Y-H. Koh, W-Y. Choi, and H-E. Kim: Porous alumina ceramics with highly aligned pores by heat-treating extruded alumina/camphene body at temperature near its solidification point. J. Eur. Ceram. Soc. 32, 1029–1034 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    M. Fukushima, M. Nakata, and Y. Yoshizawa: Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. J. Ceram. Soc. Jpn. 116, 1322–1325 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    M. Fukushima, M. Nakata, Y. Zhou, T. Ohji, and Y. Yoshizawa: Fabrication and properties of ultra highly porous silicon carbide by the gelation–freezing method. J. Eur. Ceram. Soc. 30, 2889–2896 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia: Freezing as a path to build complex composites. Science 311, 515–518 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, and D. Li: Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012).

    Article  Google Scholar 

  16. 16.

    P.M. Hunger, A.E. Donius, and U.G.K.K. Wegst: Platelets self-assemble into porous nacre during freeze casting. J. Mech. Behav. Biomed. Mater. 19, 87–93 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    J. Lee and Y. Deng: The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating method. Biomacromolecules 7, 6034 (2011).

    CAS  Google Scholar 

  18. 18.

    S. Deville: Ice shaping properties, similar to that of antifreeze proteins, of a zirconium acetate complex. PLoS One 6, e26474 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    S. Deville, C. Viazzi, and C. Guizard: Ice-structuring mechanism for zirconium acetate. Langmuir 28, 14892–14898 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    J.A. Sekhar and R. Trivedi: Solidification microstructure evolution in the presence of inert particles. Mater. Sci. Eng., A 147, 9–21 (1991).

    Article  Google Scholar 

  21. 21.

    M. Vural and G. Ravichandran: Microstructural aspects and modeling of failure in naturally occurring porous composites. Mech. Mater. 35, 523–536 (2003).

    Article  Google Scholar 

  22. 22.

    N.O. Shanti, K. Araki, and J.W. Halloran Particle redistribution during dendritic solidification of particle suspensions. J. Am. Ceram. Soc. 89, 2444–2447 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    M.M. Seabaugh, I.H. Kerscht, and G.L. Messing: Texture development by templated grain growth in liquid phase sintered alpha-alumina. J. Am. Ceram. Soc. 80, 1181–1188 (1997).

    CAS  Article  Google Scholar 

  24. 24.

    R.J. Pavlacka and G.L. Messing: Processing and mechanical response of highly textured Al2O3. J. Eur. Ceram. Soc. 30, 2917–2925 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    S.S.L. Peppin, J.A.W. Elliott, and M.G. Worster: Solidification of colloidal suspensions. J. Fluid Mech. 554, 147 (2006).

    Article  Google Scholar 

  26. 26.

    U.T. Gonzenbach, A.R. Studart, E. Tervoort, and L.J. Gauckler: Macroporous ceramics from particle-stabilized wet foams. J. Am. Ceram. Soc. 90, 16–22 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    P.M. Hunger, A.E. Donius, and U.G.K. Wegst: Structure-property-processing correlations in freeze-cast composite scaffolds. Acta Biomater. 9, 6338–6348 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    H-J. Yoon: Macroporous alumina ceramics with aligned microporous walls by unidirectionally freezing foamed aqueous ceramic suspensions. J. Am. Ceram. Soc. 1582, 2009–2011 (2010).

    Google Scholar 

  29. 29.

    J. Han, C. Hong, X. Zhang, J. Du, and W. Zhang: Highly porous ZrO2 ceramics fabricated by a camphene-based freeze-casting route: Microstructure and properties. J. Eur. Ceram. Soc. 30, 53–60 (2010).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Florian Bouville.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bouville, F., Maire, E. & Deville, S. Lightweight and stiff cellular ceramic structures by ice templating. Journal of Materials Research 29, 175–181 (2014). https://doi.org/10.1557/jmr.2013.385

Download citation