Abstract
A theoretical model of nanovoid nucleation at triple junctions in nanocrystalline materials is developed in this article. The sliding of grain boundaries (GBs) meeting at triple junctions, which can be attributed to the gliding of GB dislocations (GBDs), provides the driving force for nanovoid nucleation. The GB sliding is accommodated by the emission of partial dislocations from GBs as well as GB diffusion. The corresponding energy characteristics of the pile-ups of GBDs, the emission of partial dislocations from the GBs, and GB diffusion are calculated, respectively. Furthermore, an energy balance method to calculate the nucleation of nanovoid at triple junctions is studied. The analysis demonstrates that the nucleation of the triple junction nanovoid depends mainly on the applied stress, the GB length (length of the pile-up), the GB structures, and the GB sliding accommodations.
This is a preview of subscription content, access via your institution.











References
- 1.
G.W. Nieman, J.R. Weertman, and R.W. Siegel: Mechanical behavior of nanocrystalline Cu and Pd. J. Mater. Res. 6, 1012 (1991).
- 2.
K.S. Kumar, S. Suresh, and H. Van Swygenhoven: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).
- 3.
M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanostructured materials. Prog. Mater. Sci. 51, 427 (2006).
- 4.
S. Benkassem, L. Capolungo, and M. Cherkaoui: Mechanical properties and multi-scale modeling of nanocrystalline materials. Acta Mater. 55, 3563 (2007).
- 5.
L. Capolungo, M. Cherkaoui, and J. Qu: On the elastic–viscoplastic behavior of nanocrystalline materials. Int. J. Plast. 23, 561 (2007).
- 6.
M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).
- 7.
C.C. Koch: Structural nanocrystalline materials: An overview. J. Mater. Sci. 42, 1403 (2007).
- 8.
I.A. Ovid’ko: Review on fracture processes in nanocrystalline materials. J. Mater. Sci. 42, 1694 (2007).
- 9.
D. Wolf, V. Yamakov, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments? Acta Mater. 53, 1 (2005).
- 10.
J. Inoue, Y. Fujii, and T. Koseki: Void formation in nanocrystalline Cu film during uniaxial relaxation test. Acta Mater. 56, 4921 (2008).
- 11.
A.A. Nazarov, A.E. Romanov, and R.Z. Valiev: On the structure, stress fields and energy of nonequilibrium grain boundaries. Acta Metall. Mater. 41, 1033 (1993).
- 12.
A.D. Sheikh-Ali: On the contribution of extrinsic grain boundary dislocations to grain boundary sliding in bicrystals. Acta Mater. 45, 3109 (1997).
- 13.
W. Bollman: On the geometry of grain and phase boundaries I. General theory. Philos. Mag. 16, 363 (1967).
- 14.
R.S. Gates: The role of grain boundary dislocations in grain boundary sliding. Acta Metall. Mater. 21, 855 (1973).
- 15.
K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 (2003).
- 16.
B.Q. Han, E.J. Lavernia, and F.A. Mohamed: Mechanical properties of nanostructured materials. Rev. Adv. Mater. Sci. 9, 1 (2005).
- 17.
J. Querin, J. Schneider, and M.F. Horstemeyer: Analysis of micro void formation at grain boundary triple points in monotonically strained AA6022-T43 sheet metal. Mater. Sci. Eng., A 463, 101 (2007).
- 18.
I.A. Ovid’ko and A.G. Sheinerman: Triple junction nanocracks in deformed nanocrystalline materials. Acta Mater. 52, 1201 (2004).
- 19.
I.A. Ovid’ko and A.G. Sheinerman: Suppression of nanocrack generation in nanocrystalline materials under superplastic deformation. Acta Mater. 53, 1347 (2005).
- 20.
I.A. Ovid’ko and A.G. Sheinerman: Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Mater. 57, 2217 (2009).
- 21.
J. Schäfer and K. Albe: Competing deformation mechanisms in nanocrystalline metals and alloys: Coupled motion versus grain boundary sliding. Acta Mater. 60, 6076 (2012).
- 22.
H.S. Kim, Y. Estrin, and M.B. Bush: Plastic deformation behaviour of fine-grained materials. Acta Mater. 48, 493 (2000).
- 23.
V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater. 50, 61 (2002).
- 24.
Y.R. Kolobov and I.V. Ratochka: Grain boundary diffusion and plasticity/superplasticity of polycrystalline and nanostructured metals and alloys. Mater. Sci. Eng., A 411, 468 (2005).
- 25.
A.A. Fedorov, M.Y. Gutkin, and I.A. Ovid’ko: Triple junction diffusion and plastic flow in fine-grained materials. Scr. Mater. 47, 51 (2002).
- 26.
W. Yang and F. Yang: Kinetics and size effect of grain rotations in nanocrystals with rounded triple junctions. Scr. Mater. 61, 919 (2009).
- 27.
M. Murayama, J.M. Howe, H. Hidaka, and S. Takaki: Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science 295, 2433 (2002).
- 28.
I.A. Ovid’ko: Deformation of nanostructures. Science 295, 2386 (2002).
- 29.
H. Van Swygenhoven, P.M. Derlet, and A. Hasnaoui: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66, 024101 (2002).
- 30.
X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, and Y.T. Zhu: Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett. 83, 632 (2003).
- 31.
M.G. Zelin and A.K. Mukherjee: Geometrical aspects of superplastic flow. Mater. Sci. Eng., A 208, 210 (1996).
- 32.
I.A. Ovid’ko and A.G. Sheinerman: Grain-boundary dislocations and enhanced diffusion in nanocrystalline bulk materials and films. Philos. Mag. 83, 1551 (2003).
- 33.
M.S. Wu and J. Niu: A theoretical analysis of crack nucleation due to grain boundary dislocation pile-ups in a random ice microstructure. Philos. Mag. A 71, 831 (1995).
- 34.
M.S. Wu: Crack nucleation due to dislocation pile-ups at I-, U- and amorphized triple lines. Mech. Mater. 25, 215 (1997).
- 35.
R. Raj: Nucleation of cavities at second phase particles in grain boundaries. Acta Metall. 26, 995 (1978).
- 36.
S.V. Bobylev, M.Y. Gutkin, and I.A. Ovid’ko: Transformations of grain boundaries in deformed nanocrystalline materials. Acta Mater. 52, 3793 (2004).
- 37.
R.C. Hugo, H. Kung, J.R. Weertman, R. Mitra, J.A. Knapp, and D.M. Follstaedt: In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater. 51, 1937 (2003).
- 38.
A.H. Chokshi and A.K. Mukherjee: An analysis of cavity nucleation in superplasticity. Acta Metall. 37, 3007 (1989).
- 39.
R.G. Fleck, D.M.R. Taplin, and D.J. Beevers: The prediction of creep fracture from intergranular damage measurements in a copper alloy. Acta Metall. 23, 415 (1975).
- 40.
S.M. Foiles and J.J. Hoyt: Computation of grain boundary stiffness and mobility from boundary fluctuations. Acta Mater. 54, 3351 (2006).
- 41.
A.H. Chokshi: Cavity nucleation and growth in superplasticity. Mater. Sci. Eng., A 410, 95 (2005).
- 42.
A.A. Fedorov, M.Y. Gutkin, and I.A. Ovid’ko: Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials. Acta Mater. 51, 887 (2003).
- 43.
W.W. Milligan, S.A. Hackney, M. Ke, and E.C. Aifantis: In situ studies of deformation and fracture in nanophase materials. Nanostruct. Mater. 2, 267 (1993).
- 44.
M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis: Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostruct. Mater. 5, 689 (1995).
- 45.
I.A. Ovid’ko, A.G. Sheinerman, and N.V. Skiba: Elongated nanoscale voids at deformed special grain boundary structures in nanocrystalline materials. Acta Mater. 59, 678 (2011).
Acknowledgments
This work was supported by the National Natural Science Foundation of China Grant Nos. (11272143, 10872087, and 10502025), Key Project of the Chinese Ministry of Education (Grant No. 211061), the Fok Ying Tong Education Foundation (Grant No. 101005), the Program for New Century Excellent Talents in University (Grant No. NCET-12-0712), and Research Innovation Program for College Graduates of Jiangsu Province (Grant No. CXZZ12_0422).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, L., Zhou, J., Zhang, S. et al. An energy analysis of nanovoid nucleation in nanocrystalline materials with grain boundary sliding accommodations. Journal of Materials Research 29, 277–287 (2014). https://doi.org/10.1557/jmr.2013.383
Received:
Accepted:
Published:
Issue Date: