An energy analysis of nanovoid nucleation in nanocrystalline materials with grain boundary sliding accommodations


A theoretical model of nanovoid nucleation at triple junctions in nanocrystalline materials is developed in this article. The sliding of grain boundaries (GBs) meeting at triple junctions, which can be attributed to the gliding of GB dislocations (GBDs), provides the driving force for nanovoid nucleation. The GB sliding is accommodated by the emission of partial dislocations from GBs as well as GB diffusion. The corresponding energy characteristics of the pile-ups of GBDs, the emission of partial dislocations from the GBs, and GB diffusion are calculated, respectively. Furthermore, an energy balance method to calculate the nucleation of nanovoid at triple junctions is studied. The analysis demonstrates that the nucleation of the triple junction nanovoid depends mainly on the applied stress, the GB length (length of the pile-up), the GB structures, and the GB sliding accommodations.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.


  1. 1.

    G.W. Nieman, J.R. Weertman, and R.W. Siegel: Mechanical behavior of nanocrystalline Cu and Pd. J. Mater. Res. 6, 1012 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    K.S. Kumar, S. Suresh, and H. Van Swygenhoven: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanostructured materials. Prog. Mater. Sci. 51, 427 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    S. Benkassem, L. Capolungo, and M. Cherkaoui: Mechanical properties and multi-scale modeling of nanocrystalline materials. Acta Mater. 55, 3563 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    L. Capolungo, M. Cherkaoui, and J. Qu: On the elastic–viscoplastic behavior of nanocrystalline materials. Int. J. Plast. 23, 561 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    C.C. Koch: Structural nanocrystalline materials: An overview. J. Mater. Sci. 42, 1403 (2007).

    CAS  Article  Google Scholar 

  8. 8.

    I.A. Ovid’ko: Review on fracture processes in nanocrystalline materials. J. Mater. Sci. 42, 1694 (2007).

    Article  CAS  Google Scholar 

  9. 9.

    D. Wolf, V. Yamakov, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter: Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments? Acta Mater. 53, 1 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    J. Inoue, Y. Fujii, and T. Koseki: Void formation in nanocrystalline Cu film during uniaxial relaxation test. Acta Mater. 56, 4921 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    A.A. Nazarov, A.E. Romanov, and R.Z. Valiev: On the structure, stress fields and energy of nonequilibrium grain boundaries. Acta Metall. Mater. 41, 1033 (1993).

    CAS  Article  Google Scholar 

  12. 12.

    A.D. Sheikh-Ali: On the contribution of extrinsic grain boundary dislocations to grain boundary sliding in bicrystals. Acta Mater. 45, 3109 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    W. Bollman: On the geometry of grain and phase boundaries I. General theory. Philos. Mag. 16, 363 (1967).

    Article  Google Scholar 

  14. 14.

    R.S. Gates: The role of grain boundary dislocations in grain boundary sliding. Acta Metall. Mater. 21, 855 (1973).

    CAS  Article  Google Scholar 

  15. 15.

    K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51, 387 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    B.Q. Han, E.J. Lavernia, and F.A. Mohamed: Mechanical properties of nanostructured materials. Rev. Adv. Mater. Sci. 9, 1 (2005).

    CAS  Google Scholar 

  17. 17.

    J. Querin, J. Schneider, and M.F. Horstemeyer: Analysis of micro void formation at grain boundary triple points in monotonically strained AA6022-T43 sheet metal. Mater. Sci. Eng., A 463, 101 (2007).

    Article  CAS  Google Scholar 

  18. 18.

    I.A. Ovid’ko and A.G. Sheinerman: Triple junction nanocracks in deformed nanocrystalline materials. Acta Mater. 52, 1201 (2004).

    Article  CAS  Google Scholar 

  19. 19.

    I.A. Ovid’ko and A.G. Sheinerman: Suppression of nanocrack generation in nanocrystalline materials under superplastic deformation. Acta Mater. 53, 1347 (2005).

    Article  CAS  Google Scholar 

  20. 20.

    I.A. Ovid’ko and A.G. Sheinerman: Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Mater. 57, 2217 (2009).

    Article  CAS  Google Scholar 

  21. 21.

    J. Schäfer and K. Albe: Competing deformation mechanisms in nanocrystalline metals and alloys: Coupled motion versus grain boundary sliding. Acta Mater. 60, 6076 (2012).

    Article  CAS  Google Scholar 

  22. 22.

    H.S. Kim, Y. Estrin, and M.B. Bush: Plastic deformation behaviour of fine-grained materials. Acta Mater. 48, 493 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation. Acta Mater. 50, 61 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    Y.R. Kolobov and I.V. Ratochka: Grain boundary diffusion and plasticity/superplasticity of polycrystalline and nanostructured metals and alloys. Mater. Sci. Eng., A 411, 468 (2005).

    Article  CAS  Google Scholar 

  25. 25.

    A.A. Fedorov, M.Y. Gutkin, and I.A. Ovid’ko: Triple junction diffusion and plastic flow in fine-grained materials. Scr. Mater. 47, 51 (2002).

    CAS  Article  Google Scholar 

  26. 26.

    W. Yang and F. Yang: Kinetics and size effect of grain rotations in nanocrystals with rounded triple junctions. Scr. Mater. 61, 919 (2009).

    CAS  Article  Google Scholar 

  27. 27.

    M. Murayama, J.M. Howe, H. Hidaka, and S. Takaki: Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science 295, 2433 (2002).

    CAS  Article  Google Scholar 

  28. 28.

    I.A. Ovid’ko: Deformation of nanostructures. Science 295, 2386 (2002).

    Article  Google Scholar 

  29. 29.

    H. Van Swygenhoven, P.M. Derlet, and A. Hasnaoui: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66, 024101 (2002).

    Article  CAS  Google Scholar 

  30. 30.

    X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, and Y.T. Zhu: Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett. 83, 632 (2003).

    CAS  Article  Google Scholar 

  31. 31.

    M.G. Zelin and A.K. Mukherjee: Geometrical aspects of superplastic flow. Mater. Sci. Eng., A 208, 210 (1996).

    Article  Google Scholar 

  32. 32.

    I.A. Ovid’ko and A.G. Sheinerman: Grain-boundary dislocations and enhanced diffusion in nanocrystalline bulk materials and films. Philos. Mag. 83, 1551 (2003).

    Article  CAS  Google Scholar 

  33. 33.

    M.S. Wu and J. Niu: A theoretical analysis of crack nucleation due to grain boundary dislocation pile-ups in a random ice microstructure. Philos. Mag. A 71, 831 (1995).

    CAS  Article  Google Scholar 

  34. 34.

    M.S. Wu: Crack nucleation due to dislocation pile-ups at I-, U- and amorphized triple lines. Mech. Mater. 25, 215 (1997).

    Article  Google Scholar 

  35. 35.

    R. Raj: Nucleation of cavities at second phase particles in grain boundaries. Acta Metall. 26, 995 (1978).

    CAS  Article  Google Scholar 

  36. 36.

    S.V. Bobylev, M.Y. Gutkin, and I.A. Ovid’ko: Transformations of grain boundaries in deformed nanocrystalline materials. Acta Mater. 52, 3793 (2004).

    CAS  Article  Google Scholar 

  37. 37.

    R.C. Hugo, H. Kung, J.R. Weertman, R. Mitra, J.A. Knapp, and D.M. Follstaedt: In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater. 51, 1937 (2003).

    CAS  Article  Google Scholar 

  38. 38.

    A.H. Chokshi and A.K. Mukherjee: An analysis of cavity nucleation in superplasticity. Acta Metall. 37, 3007 (1989).

    CAS  Article  Google Scholar 

  39. 39.

    R.G. Fleck, D.M.R. Taplin, and D.J. Beevers: The prediction of creep fracture from intergranular damage measurements in a copper alloy. Acta Metall. 23, 415 (1975).

    CAS  Article  Google Scholar 

  40. 40.

    S.M. Foiles and J.J. Hoyt: Computation of grain boundary stiffness and mobility from boundary fluctuations. Acta Mater. 54, 3351 (2006).

    CAS  Article  Google Scholar 

  41. 41.

    A.H. Chokshi: Cavity nucleation and growth in superplasticity. Mater. Sci. Eng., A 410, 95 (2005).

    Article  CAS  Google Scholar 

  42. 42.

    A.A. Fedorov, M.Y. Gutkin, and I.A. Ovid’ko: Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials. Acta Mater. 51, 887 (2003).

    CAS  Article  Google Scholar 

  43. 43.

    W.W. Milligan, S.A. Hackney, M. Ke, and E.C. Aifantis: In situ studies of deformation and fracture in nanophase materials. Nanostruct. Mater. 2, 267 (1993).

    CAS  Article  Google Scholar 

  44. 44.

    M. Ke, S.A. Hackney, W.W. Milligan, and E.C. Aifantis: Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostruct. Mater. 5, 689 (1995).

    CAS  Article  Google Scholar 

  45. 45.

    I.A. Ovid’ko, A.G. Sheinerman, and N.V. Skiba: Elongated nanoscale voids at deformed special grain boundary structures in nanocrystalline materials. Acta Mater. 59, 678 (2011).

    Article  CAS  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China Grant Nos. (11272143, 10872087, and 10502025), Key Project of the Chinese Ministry of Education (Grant No. 211061), the Fok Ying Tong Education Foundation (Grant No. 101005), the Program for New Century Excellent Talents in University (Grant No. NCET-12-0712), and Research Innovation Program for College Graduates of Jiangsu Province (Grant No. CXZZ12_0422).

Author information



Corresponding author

Correspondence to Jianqiu Zhou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, L., Zhou, J., Zhang, S. et al. An energy analysis of nanovoid nucleation in nanocrystalline materials with grain boundary sliding accommodations. Journal of Materials Research 29, 277–287 (2014).

Download citation