Bulge fatigue testing of freestanding and supported gold films

Abstract

The bulge test was used to investigate the fatigue properties of gold thin films with a thickness between 100 and 300 nm. The membranes were pressurized at a rate of 0.2 Hz up to 105 times, during which their stress and strain states were continuously recorded. Gold films on a silicon nitride substrate were cyclically loaded into tension and compression. Due to the presence of the substrate, no membrane failure was observed, but the residual stress shifted from an initially tensile state to an increasingly compressive one. Typical fatigue damage mechanisms consisting of extrusions were found in some large grains. Freestanding films were cyclically loaded in pure tension until failure occurred. The data acquired during the fatigue tests show a strong ratcheting of the films, which is indicative of cyclic plastic creep. Microstructural investigations clearly show grain boundary sliding in very thin films with columnar grains extending through the thickness.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
TABLE I.

References

  1. 1.

    R. Schwaiger, G. Dehm, and O. Kraft: Cyclic deformation of polycrystalline Cu films. Philos. Mag. 83(6), 693–710 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    R. Schwaiger and O. Kraft: Size effects in the fatigue behavior of thin Ag films. Acta Mater. 51(1), 195–206 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54(11), 3127–3139 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    N. Lu, Z. Suo, and J.J. Vlassak: The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 58(5), 1679–1687 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    O. Kraft, R. Schwaiger, and P. Wellner: Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng., A 319–321, 919–923 (2001).

    Article  Google Scholar 

  6. 6.

    H. Mughrabi: Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall. 31(9), 1367–1379 (1983).

    CAS  Article  Google Scholar 

  7. 7.

    H. Mughrabi: Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. B 40(4), 431–453 (2009).

    Article  CAS  Google Scholar 

  8. 8.

    A.T. Winter: Etching studies of dislocation microstructures in crystals of copper fatigued at low constant plastic strain amplitude. Philos. Mag. 28(1), 57–64 (1973).

    CAS  Article  Google Scholar 

  9. 9.

    G-D. Sim, Y. Hwangbo, H-H. Kim, S-B. Lee, and J.J. Vlassak: Fatigue of polymer-supported Ag thin films. Scr. Mater. 66(11), 915–918 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    X.J. Sun, C.C. Wang, J. Zhang, G. Liu, G.J. Zhang, X.D. Ding, G.P. Zhang, and J. Sun: Thickness dependent fatigue life at microcrack nucleation for metal thin films on flexible substrates. J. Phys. D: Appl. Phys. 41(19), 195404 (2008).

    Article  CAS  Google Scholar 

  11. 11.

    N. Lu, X. Wang, Z. Suo, and J. Vlassak: Failure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates. J. Mater. Res. 24(2), 379–385 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    K. Abbas, Z.C. Leseman, and T.J. Mackin: Ultra low cycle fatigue of axisymmetric freestanding nanoscale gold films. In ASME Proceedings, ASME: 2008; pp. 91–97.

    Google Scholar 

  13. 13.

    M-T. Lin, C-J. Tong, and K.S. Shiu: Novel microtensile method for monotonic and cyclic testing of freestanding copper thin films. Exp. Mech. 50(1), 55–64 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    M-T. Lin, C-J. Tong, and K-S. Shiu: Monotonic and fatigue testing of freestanding submicron thin beams application for MEMS. Microsys. Technol. 14(7), 1041–1048 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    O. Kraft and C.A. Volkert: Mechanical testing of thin films and small structures. Adv. Eng. Mater. 3(3), 99–110 (2001).

    CAS  Article  Google Scholar 

  16. 16.

    E.W. Schweitzer and M. Göken: In situ bulge testing in an atomic force microscope: Microdeformation experiments of thin film membranes. J. Mater. Res. 22(10), 2902–2911 (2007).

    CAS  Article  Google Scholar 

  17. 17.

    B. Merle and M. Göken: Fracture toughness of silicon nitride thin films of different thicknesses as measured by bulge tests. Acta Mater. 59(4), 1772–1779 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    J.A. Liddle, H.A. Huggins, P. Mulgrew, L.R. Harriott, H.H. Wade, and K. Bolan: Fracture strength of thin ceramic membranes. Mater. Res. Soc. Symp. Proc. 338, 501–506 (1994).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Xiang, J. McKinnell, W-M. Ang, and J.J. Vlassak: Measuring the fracture toughness of ultra-thin films with application to alta coatings. Int. J. Fract. 144(3), 173–179 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    A.J. Kalkman, A.H. Verbruggen, and G.C.A.M. Janssen: Young’s modulus measurements and grain boundary sliding in free-standing thin metal films. Appl. Phys. Lett. 78(18), 2673–2675 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    J.J. Vlassak and W.D. Nix: New bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7(12), 3242–3249 (1992).

    CAS  Article  Google Scholar 

  22. 22.

    Y. Xiang, X. Chen, and J.J. Vlassak: Plane-strain bulge test for thin films. J. Mater. Res. 20(9), 2360–2370 (2005).

    CAS  Article  Google Scholar 

  23. 23.

    M. Small and W.D. Nix: Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films. J. Mater. Res. 7(6), 1553–1563 (1992).

    CAS  Article  Google Scholar 

  24. 24.

    U.F. Kocks, C.N. Tomé, and H-R. Wenk: Texture and Anisotropy (Cambridge University Press, Cambridge, UK, 1998).

    Google Scholar 

  25. 25.

    B.A. Movchan and A.V. Demchishin: Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide. Fiz. Met. Metalloved. 28(4), 653–660 (1969).

    CAS  Google Scholar 

  26. 26.

    W-H. Chuang, R.K. Fettig, and R. Ghodssi: Nano-scale fatigue study of LPCVD silicon nitride thin films using a mechanical-amplifier actuator. J. Micromech. Microeng. 17(5), 938–944 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    W-H. Chuang, R.K. Fettig, and R. Ghodssi: Fatigue study of nano-scale silicon nitride thin films using a novel electrostatic actuator. In Digest of Technical Papers Transducers’ 05, IEEE: 2005; pp. 1957–1960.

    Google Scholar 

  28. 28.

    D. Callister Jr.: Fundamental of Material Science and Engineering (Wiley & Sons, New York, 2005).

    Google Scholar 

  29. 29.

    B. Merle, E.W. Schweitzer, and M. Göken: Thickness and grain size dependence of the strength of copper thin films as investigated with bulge tests and nanoindentations. Philos. Mag. 92(25–27), 3172–3187 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook (The MIT Press, Cambridge, MA, 1971)

    Google Scholar 

  31. 31.

    Y. Xiang and J.J. Vlassak: Bauschinger effect in thin metal films. Scr. Mater. 53(2), 177–182 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    M. Hommel, O. Kraft, and E. Arzt: A new method to study cyclic deformation of thin films in tension and compression. J. Mater. Res. 14(6), 2373–2376 (1999).

    CAS  Article  Google Scholar 

  33. 33.

    C. Eberl, R. Spolenak, E. Arzt, F. Kubat, A. Leidl, W. Ruile, and O. Kraft: Ultra high-cycle fatigue in pure Al thin films and line structures. Mater. Sci. Eng., A 421(1–2), 68–76 (2006).

    Article  CAS  Google Scholar 

  34. 34.

    I.A. Blech: Electromigration in thin aluminum films on titanium nitride. J. Appl. Phys. 47(4), 1203–1208 (1976).

    CAS  Article  Google Scholar 

  35. 35.

    D-K. Kim, B. Heiland, W.D. Nix, E. Arzt, M.D. Deal, and J.D. Plummer: Microstructure of thermal hillocks on blanket Al thin films. Thin Solid Films 371(1), 278–282 (2000).

    CAS  Article  Google Scholar 

  36. 36.

    H. Mughrabi, F. Ackermann, and K. Herz: Persistent slip bands in fatigued face-centered and body-centered cubic metals, ASTM Special Technical Publication 675, 69–105 (1979).

    Google Scholar 

  37. 37.

    E. Arzt: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46(16), 5611–5626 (1998).

    CAS  Article  Google Scholar 

  38. 38.

    W.D. Nix: Mechanical properties of thin films. Metall. Trans. A 20(11), 2217–2245 (1989).

    Article  Google Scholar 

  39. 39.

    R. Schwaiger and O. Kraft: High cycle fatigue of thin silver films investigated by dynamic microbeam deflection. Scr. Mater. 41(8), 823–829 (1999).

    CAS  Article  Google Scholar 

  40. 40.

    D. Wang, C.A. Volkert, and O. Kraft: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493(1–2), 267–273 (2008).

    Article  CAS  Google Scholar 

  41. 41.

    V. Maier, B. Merle, M. Göken, and K. Durst: An improved long-term nanoindentation creep testing approach for studying the local deformation processes in nanocrystalline metals at room and elevated temperatures. J. Mater. Res. 28(9), 1177–1188 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the kind support received from Petra Rosner from the group of Erdmann Spiecker in Erlangen for the deposition of the gold films. They also thank Heinz Werner Höppel for his valuable advice about the fatigue tests, as well as Haël Mughrabi for useful discussions about the manuscript. The authors also gratefully acknowledge the funding of the German Research Council (DFG), which, within the framework of its “Excellence Initiative,” supports the cluster of excellence “Engineering of Advanced Materials” at the University of Erlangen-Nürnberg.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benoit Merle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Merle, B., Göken, M. Bulge fatigue testing of freestanding and supported gold films. Journal of Materials Research 29, 267–276 (2014). https://doi.org/10.1557/jmr.2013.373

Download citation