Skip to main content
Log in

Effect of the pH and electrodeposition frequency on magnetic properties of binary Co1−xSnx nanowire arrays

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ordered 30-nm Co1−xSnx (0 ≤ x ≤ 0.78) nanowire arrays have been prepared by co-electrodeposition of Co and Sn into pores of homemade anodized aluminum oxide (AAO). The magnetic properties of the Co1−xSnx nanowires are presented as a function of Sn content (x), annealing, electrolyte pH, electrodeposition frequency, and wave form. The result of energy-dispersive x-ray spectroscopy (EDX) showed anomalous co-deposition for Co and Sn. The nanowires have uniaxial magnetic anisotropy with easy magnetization direction along the nanowire axis due to the large shape anisotropy. As-deposited and annealed alloy nanowires, determined by x-ray diffraction (XRD), have amorphous phase. The nanowires electrodeposited at different pH and the electrodeposition frequencies have significantly different magnetic properties. Magnetization measurement showed that variation in magnetic properties of the nanowire arrays rooted in surface formation of Co(OH)2 and Sn(OH)2 in upper pH. The XRD patterns of Co and Co0.97Sn0.03 of nanowires obtained at pH = 2 and 4 obviously illustrated that pH affects the crystal structure of Co nanowires but has no effect on alloy nanowires. Moreover, the precipitation process was affected by raising the electrodepositing frequency via changing the rate of reduction of solute ions. The electrodeposition wave form has no significant effect on nanowire magnetic properties. The considerable enhanced coercivity has been measured in annealed nanowires. Experimental data demonstrate that the optimized composition for annealed Co1−xSnx nanowire is around Co0.93Sn0.07 in which the coercivity (Hc) has a maximum value of 2030 Oe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.

Similar content being viewed by others

References

  1. S-C. Lin, S-Y. Chen, Y-T. Chen, and S-Y. Cheng: Electrochemical fabrication and magnetic properties of highly ordered silver–nickel core-shell nanowires. J. Alloys Compd. 449, 232 (2008).

    Article  CAS  Google Scholar 

  2. M. Shima, M. Hwang, and C.A. Ross: Magnetic behavior of amorphous CoP cylinder arrays. J. Appl. Phys. 93, 3440 (2003).

    Article  CAS  Google Scholar 

  3. G.B. Ji, W. Chen, S.L. Tang, B.X. Gu, Z. Li, and Y.W. Du: Fabrication and magnetic properties of ordered 20 nm Co–Pb nanowire arrays. Solid State Commun. 130, 541 (2004).

    Article  CAS  Google Scholar 

  4. S.C. Kung, W. Xing, K.C. Donavan, F. Yang, and R.M. Penner: Photolithographically patterned silver nanowire electrodeposition. Electrochim. Acta 55, 8074 (2010).

    Article  CAS  Google Scholar 

  5. O. Lupan, V.V. Ursaki, G. Chai, L. Chow, G.A. Emelchenko, I.M. Tiginyanu, A.N. Gruzintsev, and A.N. Redkin: Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature. Sens. Actuators, B 144, 56–66 (2010).

    Article  CAS  Google Scholar 

  6. S. Sen, P. Kanitkar, A. Sharma, K.P. Muthe, A. Rath, S.K. Deshpande, M. Kaur, R.C. Aiyer, S.K. Gupta, and J.V. Yakhmi: Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor. Sens. Actuators, B 147, 453 (2010).

    Article  CAS  Google Scholar 

  7. O. Jessensky, F. Müller, and U. Gösele: Self-organized formation of hexagonal pore arrays in anodic alumina. Appl. Phys. Lett. 72, 1173 (1998).

    Article  CAS  Google Scholar 

  8. Y. Xu, D.S. Xue, D.Q. Gao, J.L. Fu, X.L. Fan, D.W. Guo, B. Gao, and W.B. Sui: Ordered CoFe2O4 nanowire arrays with preferred crystal orientation and magnetic anisotropy. Electrochim. Acta 54, 5684 (2009).

    Article  CAS  Google Scholar 

  9. A. Jagminas, K. Maţeika, E. Juška, J. Reklaitis, and D. Baltrūnas: Electrochemical fabrication and characterization of lepidocrocite (γ-FeOOH) nanowire arrays. Appl. Surf. Sci. 256, 3993 (2010).

    Article  CAS  Google Scholar 

  10. Y. Li, Y. Huang, L. Yan, S. Qi, L. Miao, Y. Wang, and Q. Wang: Synthesis and magnetic properties of ordered barium ferrite nanowire arrays in AAO template. Appl. Surf. Sci. 257, 8974–8980 (2011).

    Article  CAS  Google Scholar 

  11. M. Almasi Kashi, A. Ramazani, F. Adelnia Najafabadi, and Z. Heydari: Controlled Cu content of electrodeposited CoCu nanowires through pulse features and investigations of microstructures and magnetic properties. Appl. Surf. Sci. 257, 9347 (2011).

    Article  CAS  Google Scholar 

  12. R.L. Wang, S.L. Tang, Y.G. Shi, X.L. Fei, B. Nie, and Y.W. Du: Effects of annealing on the structure and magnetic properties of Fe27Co23Pb50 nanowire arrays. J. Appl. Phys. 103, 07D507 (2008).

    Article  Google Scholar 

  13. J.P. Xu, Z.Z. Zhang, B. Ma, and Q.Y. Jin: Compositional control of FexPt(1−x) nanowires by electrodeposition. J. Appl. Phys. 109, 07B704 (2011).

    Article  Google Scholar 

  14. K.R. Pirota, F. Béron, D. Zanchet, T.C.R. Rocha, D. Navas, J. Torrejón, M. Vazquez, and M. Knobel: Magnetic and structural properties of fcc/hcp bi-crystalline multilayer Co nanowire arrays prepared by controlled electroplating. J. Appl. Phys. 109, 083919 (2011).

    Article  Google Scholar 

  15. L.G. Vivas, M. Vázquez, V. Vega, J. García, W.O. Rosa, R.P. del Real, and V.M. Prida: Temperature dependent magnetization in Co-base nanowire arrays: Role of crystalline anisotropy. J. Appl. Phys. 111, 07A325 (2012).

    Article  Google Scholar 

  16. G. Kartopu, O. Yalçın, M. Es-Souni, and A.C. Başaran: Magnetization behavior of ordered and high density Co nanowire arrays with varying aspect ratio. J. Appl. Phys. 103, 093915 (2008).

    Article  Google Scholar 

  17. J. Zhang, G.A. Jones, T.H. Shen, S.E. Donnelly, and G.H. Li: Monocrystalline hexagonal-close-packed and polycrystalline face-centered-cubic Co nanowire arrays fabricated by pulse dc electrodeposition. J. Appl. Phys. 101, 054310 (2007).

    Article  Google Scholar 

  18. X. Xu and G. Zangari: Microscopic structure and magnetic behavior of arrays of electrodeposited Ni and Fe nanowires. J. Appl. Phys. 97, 10A306 (2005).

    Article  Google Scholar 

  19. A.S. Esmaeily, M. Venkatesan, A.S. Razavian, and J.M.D. Coey: Diameter-modulated ferromagnetic CoFe nanowires. J. Appl. Phys. 113, 17A327 (2013).

    Article  Google Scholar 

  20. M.S. Sultan, B. Das, K. Mandal, and D. Atkinson: Magnetic field alignment of template released ferromagnetic nanowires. J. Appl. Phys. 112, 013910 (2012).

    Article  Google Scholar 

  21. Q.F. Liu, J.B. Wang, Z.J. Yan, and D.S. Xue: The effect of diameter on micromagnetic properties of Fe0.68Ni0.32 nanowire arrays. J. Magn. Magn. Mater. 278, 323 (2004).

    Article  CAS  Google Scholar 

  22. A. Saedi and M. Ghorbani: Electrodeposition of Ni–Fe–Co alloy nanowire in modified AAO template. Mater. Chem. Phys. 91, 417 (2005).

    Article  CAS  Google Scholar 

  23. Y.W. Wang, L.D. Zhang, G.W. Meng, X.S. Peng, Y.X. Jin, and J. Zhang: Fabrication and the annealing temperature dependence of magnetic properties for ordered ferromagnetic-nonmagnetic alloy nanowire arrays. J. Phys. Chem. B 106, 2502 (2002).

    Article  CAS  Google Scholar 

  24. G.B. Ji, S.L. Tang, B.X. Gu, and Y.W. Du: Ordered Co48Pb52 nanowire arrays electrodeposited in the porous anodic alumina oxide template with enhanced coercivity. J. Phys. Chem. B 108, 8862 (2004).

    Article  CAS  Google Scholar 

  25. J.H. Min, J.H. Wu, J.U. Cho, J.H. Lee, Y.D. Ko, H.L. Liu, J.S. Chung, and Y.K. Kim: Electrochemical preparation of Co3Pt nanowires. Phys. Status Solidi A 204, 4158 (2007).

    Article  CAS  Google Scholar 

  26. G. Mo, W. Cheng, Q. Cai, W. Wang, K. Zhang, X. Xing, Z. Chen, and Z. Wu: Structural change of Ni–Cu alloy nanowires with temperature studied by in situ X-ray absorption fine structure technique. Mater. Chem. Phys. 121, 390 (2010).

    Article  CAS  Google Scholar 

  27. L. Liu, H. Li, S. Fan, J. Gu, Y. Li, and H. Sun: Fabrication and magnetic properties of Ni–Zn nanowire arrays. J. Magn. Magn. Mater. 321, 3511 (2009).

    Article  CAS  Google Scholar 

  28. R.L. Wang, S.L. Tang, B. Nie, X.L. Fei, Y.G. Shi, and Y.W. Du: Fabrication and magnetic properties of ordered Fe60Pb40 nanowire arrays electrodeposited in AAO templates. Solid State Commun. 142, 639 (2007).

    Article  CAS  Google Scholar 

  29. F. Li and L. Ren: Fabrication and magnetic properties of FePt3 nanowire arrays. Phys. Status Solidi A 193, 196 (2002).

    Article  CAS  Google Scholar 

  30. M. Koohbor, S. Soltanian, M. Najafi, and P. Servati: Fabrication of CoZn alloy nanowire arrays: Significant improvement in magnetic properties by annealing process. Mater. Chem. Phys. 131, 728 (2012).

    Article  CAS  Google Scholar 

  31. T. Wang, F. Li, Y. Wang, and L. Song: Structure and magnetic properties of metastable Co–Cu solid solution nanowire arrays fabricated by electrodeposition. Phys. Status Solidi A 203, 2426 (2006).

    Article  CAS  Google Scholar 

  32. H. Masuda and K. Fukuda: Ordered metal nanohole arrays made by a two-step replication of honeycomb structure of anodic alumina. Science 268, 1466 (1995).

    Article  CAS  Google Scholar 

  33. H. Masuda, F. Hasegawa, and S. Ono: Self ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J. Electrochem. Soc. 144, L127 (1997).

    Article  CAS  Google Scholar 

  34. H. Masuda, K. Yada, and A. Osaka: Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution. Jpn. J. Appl. Phys. 37, L1340 (1998).

    Article  Google Scholar 

  35. J.P. O’Sullivan and G.C. Wood: The morphology and mechanism of formation of porous anodic films on aluminium. Proc. R. Soc. London, Ser. A 317, 511 (1970).

    Article  Google Scholar 

  36. M. Najafi, S. Soltanian, H. Danyali, R. Hallaj, A. Salimi, S.M. Elahi, and P. Servati: Preparation of cobalt nanowires in porous aluminum oxide: Study of the effect of barrier layer. J. Mater. Res. 27(18), 2382 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support from the Grant Research Councils of Bu-Ali Sina University as well as HUT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojgan Najafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najafi, M., Rafati, A.A., Fart, M.K. et al. Effect of the pH and electrodeposition frequency on magnetic properties of binary Co1−xSnx nanowire arrays. Journal of Materials Research 29, 190–196 (2014). https://doi.org/10.1557/jmr.2013.371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.371

Navigation