Atomistic simulation of the strain-hardening behavior of bicrystal Cu nanowires


To determine whether plastic-hardening behavior occurs in metal nanowires, an atomistic simulation was performed to investigate the tension process in a bicrystal Cu nanowire. The results indicate that bicrystal Cu nanowires exhibit strain-hardening behavior, unlike their single-crystal counterparts. The strain-hardening behavior is related to the orientation of two crystal grains, and the number of atoms determines whether strain-hardening behavior occurs in the asymmetrically tilted bicrystal Cu nanowires. Strain hardening occurs in almost bicrystal Cu nanowires with different orientation angles. The initial yield stress is determined by the grain whose orientation angle is closer to 45° among the two crystal grains, resulting in a high value of the tilting tendency factor, and thus making it easier to generate slip.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9


  1. 1.

    V.V. Bulatov, L.L. Hsiung, M. Tang, A. Arsenlis, M.C. Bartelt, W. Cai, J.N. Florando, M. Hiratani, M. Rhee, G. Hommes, T.G. Pierce, and T.D. de la Rubia: Dislocation multi-junctions and strain hardening. Nature 440, 1174–1178 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    M.J. Buehler, A. Hartmaier, M.A. Duchaineau, F.R. Abraham, and H.J. Gao: The dynamical complexity of work-hardening: A large-scale molecular dynamics simulation. Acta Mech. Sin. 21, 103–111 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Zhu, Q.Q. Qin, F. Xu, F.R. Fan, Y. Ding, T. Zhang, B.J. Wiley, and Z.L. Wang: Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments. Phys. Rev. B 85, 45443 (2012).

    Article  Google Scholar 

  4. 4.

    C. Deng and F. Sansoz: Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires. Nano Lett. 9, 1517–1522 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    B. Wu, A. Heidelberg, and J.J. Boland: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525–529 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    R. Dou and B. Derby: The strength of gold nanowire forests. Scr. Mater. 59, 151–154 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    L. Philippe, Z. Wang, I. Peyrot, A.W. Hassel, and J. Michler: Nanomechanics of rhenium wires: Elastic modulus, yield strength and strain hardening. Acta Mater. 57, 4032–4035 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    D. Appell: Nanotechnology: Wired for success. Nature 419, 553–555 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    Z. Wang, X. Zu, L. Yang, F. Gao, and W.J. Weber: Molecular dynamics simulation on the buckling behavior of GaN nanowires under uniaxial compression. Physica E 40, 561–566 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    T. Zhu and H.J. Gao: Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling. Scr. Mater. 66, 843–848 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    H.S. Park and J.A. Zimmerman: Stable nanobridge formation in <110> gold nanowires under tensile deformation. Scr. Mater. 54, 1127–1132 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    Y.H. Wen, Y. Zhang, and Z.Z. Zhu: Size-dependent effects on equilibrium stress and strain in nickel nanowires. Phys. Rev. B 76, 125423 (2007).

    Article  Google Scholar 

  13. 13.

    C.R. Weinberger and W. Cai: Plasticity of metal nanowires. J. Mater. Chem. 22, 3277–3292 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    C. Deng and F. Sansoz: Fundamental differences in the plasticity of periodically twinned nanowires in Au, Ag, Al, Cu, Pb and Ni. Acta Mater. 57, 6090–6101 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    C. Deng and F. Sansoz: Effects of twin and surface facet on strain-rate sensitivity of gold nanowires at different temperatures. Phys. Rev. B 81, 155430 (2010).

    Article  Google Scholar 

  16. 16.

    A. Cao, Y.G. Wei, and E. Ma: Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires: Molecular dynamics simulations. Phys. Rev. B 77, 195429 (2008).

    Article  Google Scholar 

  17. 17.

    D.E. Spearot, K.I. Jacob, and D.L. Mcdowell: Dislocation nucleation from bicrystal interfaces with dissociated structure. Int. J. Plast. 23, 143–160 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    G.J. Tucker, J.A. Zimmerman, and D.L. Mcdowell: Shear deformation kinematics of bicrystalline grain boundaries in atomistic simulations. Modell. Simul. Mater. Sci. Eng. 18, 015002 (2010).

    Article  Google Scholar 

  19. 19.

    M.S. Daw and M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443–6453 (1984).

    CAS  Article  Google Scholar 

  20. 20.

    S.J. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Article  Google Scholar 

  21. 21.

    C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998).

    CAS  Article  Google Scholar 

Download references


This project is sponsored by the National Science Foundation of China (Grant No. 51175110) and the Fundamental Research Funds for the Central Universities (Grant No. HIT.KLOF.2010006).

Author information



Corresponding author

Correspondence to Debin Shan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yuan, L., Shan, D., Xu, Z. et al. Atomistic simulation of the strain-hardening behavior of bicrystal Cu nanowires. Journal of Materials Research 28, 3339–3346 (2013).

Download citation