Barrierless Cu-Ni-Nb thin films on silicon with high thermal stability and low electrical resistivity

An Erratum to this article is available

This article has been updated

Abstract

In this paper, we demonstrate a thin film Cu-Ni-Nb alloy deposited directly on silicon, without a designated barrier, showing very high thermal stability at a temperature up to 700 °C for 1 h. Thin [Nb-Ni12]Cux films were sputter deposited and annealed, and their material and electrical properties were studied. The results can be explained by the “cluster-plus-glue atom” model for stable solid solutions, where [Nb-Ni12] cuboctahedral clusters are embedded in a Cu matrix. In this model, the clusters are congruent with the Cu minimizing atomic interactions allowing a good stability. The properties of the films were found to be affected by the Ni/Nb ratios. Especially, the (Nb1.2/13.2Ni12/13.2)0.3Cu99.7 film annealed at 500 °C for 1 h had the lowest electrical resistivity of about 2.7 μΩ cm. And even after 40 h annealing at 500 °C, it maintained a low resistivity of about 2.8 μΩ cm, demonstrating extremely high stabilities against silicide formation.

This is a preview of subscription content, access via your institution.

FIG. 1.
TABLE I
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Change history

References

  1. 1.

    C.S. Liu and L.J. Chen: Effects of substrate cleaning and film thickness on the epitaxial growth of ultrahigh vacuum deposited Cu thin films on (001)Si. J. Appl. Phys. 74, 5501 (1993).

    CAS  Article  Google Scholar 

  2. 2.

    J.P. Chu, C.H. Lin, and V.S. John: Cu films containing insoluble Ru and RuN on barrierless Si for excellent property improvements. Appl. Phys. Lett. 91, 132109 (2007).

    Article  Google Scholar 

  3. 3.

    J.P. Chu and C.H. Lin: Thermal stability of Cu(W) and Cu(Mo) films for advanced barrierless Cu metallization: Effects of annealing time. J. Electron. Mater. 35, 1933 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    J.B. Zhou, T. Gustafsson, and E. Garfunkel: The structure and thermal behavior of Cu on ultrathin films of SiO2 on Si(111). Surf. Sci. 372, 21 (1997).

    CAS  Article  Google Scholar 

  5. 5.

    J.P. Chu, T.Y. Yu, C.H. Wu, C.H. Lin, S.F. Wang, and Q. Chen: Ultrathin diffusion barrier for copper metallization: A thermally stable amorphous rare-earth scandate. J. Electrochem. Soc. 157, H384 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    S-Y. Changa, C-E. Li, S-C. Chiang, and Y-C. Huang: 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects. J. Alloys Compd. 515, 4 (2012).

    Article  Google Scholar 

  7. 7.

    Y. Wang, C. Hung, W. Lee, S. Chang, and Y. Wang: Under-layer behavior study of low resistance Ta/TaNx barrier film. Thin Solid Films 516, 5241 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    D-C. Tsai, Y-L. Huang, S-R. Lin, d-R. Jung, S-Y. Chang, Z-C. Chang, M-J. Deng, and F-S. Shieu: Characteristics of a 10 nm-thick (TiVCr)N multi-component diffusion barrier layer with high diffusion resistance for Cu interconnects. Surf. Coat. Technol. 205, 5064 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    A. Kohn, M. Eizenberg, and Y Shacham-Diamand: Evaluation of electroless deposited Co(W,P) thin films as diffusion barriers for copper metallization. Microelectron. Eng. 55, 297 (2001).

    CAS  Article  Google Scholar 

  10. 10.

    X.J. Wang, X.P. Dong, and C.H. Jiang: Thermal performance of sputtered Cu films containing insoluble Zr and Cr for advanced barrierless Cu metallization. Trans. Nonferrous Met. Soc. China 20, 217 (2010).

    Article  Google Scholar 

  11. 11.

    M.Y. Kwak, D.H. Shin, T.W. Kang, and K.N. Kim: Characteristics of TiN barrier layer against Cu diffusion. Thin Solid Films 339, 290 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    C.H. Lin, J.P. Chu, T. Mahalingam, T.N. Lin, and S.F. Wang: Sputtered copper films with insoluble Mo for Cu metallization: A thermal annealing study. J. Electron. Mater. 32, 1235 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    T. Mahalingam, C.H. Lin, L.T. Wang, and J.P. Chu: Preparation and characterization of sputtered Cu films containing insoluble Nb. Mater. Chem. Phys. 100, 490 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    J. Zhang, Q. Wang, Y.M. Wang, C.Y. Li, L.S. Wen, and C. Dong: Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion resistant Cu-Ni alloys and relevant cluster model. J. Mater. Res. 25, 328 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    C. Dong, Q. Wang, J.B. Qiang, Y.M. Wang, N. Jiang, G. Han, Y.H. Li, J. Wu, and J.H. Xia: From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses. J. Phys. D: Appl. Phys. 40, R273 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    X.N. Li, L.J. Liu, X.Y. Zhang, J.P. Chu, Q. Wang, and C. Dong: Barrierless Cu-Ni-Mo interconnect films with high thermal stability against silicide formation. J. Electron. Mater. 41, 3447 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    L.F. Nie, X.N. Li, J.P. Chu, Q. Wang, C.H. Lin, and C. Dong: High thermal stability and low electrical resistivity carbon-containing Cu film on barrierless Si. Appl. Phys. Lett. 96, 182105 (2010).

    Article  Google Scholar 

  18. 18.

    M.B. Tian and L.D. Liu: Science and Technology of Thin Film, 1st ed. (Machinery Industry Press, Beijing, 1991).

    Google Scholar 

  19. 19.

    K. Barmak, A. Gungor, C. Cabral Jr., and J.M.E. Harper: Annealing behavior of Cu and dilute Cu-alloy films: Precipitation, grain growth, and resistivity. J. Appl. Phys. 94, 1605 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    K. Barmak, C. Cabral Jr., J.M.E. Harper, and K.P. Rodbell: On the use of alloying elements for Cu interconnect applications. J. Vac. Sci. Technol., B. 24, 2485 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    Y. Shacham-Diamand, A. Dedhia, D. Hoffstetter, and W.G. Oldham: Copper transport in thermal SiO2. J. Electrochem. Soc. 140, 2427 (1993).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This project was supported by the National Science Foundation of China (Grant Nos. 51271045 and 11174044).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiao Na Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, X.N., Zhao, L.R., Li, Z. et al. Barrierless Cu-Ni-Nb thin films on silicon with high thermal stability and low electrical resistivity. Journal of Materials Research 28, 3367–3373 (2013). https://doi.org/10.1557/jmr.2013.355

Download citation