Surface-enhanced Raman scattering from rhodamine 6G on gold-coated self-organized silicon nanopyramidal array


This work reports the gold-coated self-organized silicon nanopyramidal array prepared by a wet etching and magnetron sputtering process at room temperature. Scanning electron microscopy was used to detect the morphology of gold films. The surface-enhanced Raman scattering (SERS) spectra of the rhodamine 6G (R6G) molecules adsorbed on a nanoscale gold film were recorded. Experimental results show the relationships between gold film thickness and SERS intensity. A full three-dimensional finite difference time domain calculations were carried out, which compare the experimental results and show agreement with ratios of the SERS enhancement for the different thicknesses of gold films. Furthermore, numerical simulations of the array were conducted for both a real gold metal coating and a perfect electrical conductor to determine whether the SERS enhancement was due to diffraction or plasmonic effects. The sample with the fast fabrication process used in this work could provide a new way to obtain a uniform enhancement and low cost SERS substrate.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.


  1. 1.

    M. Fleischm, P.J. Hendra, and A.J. McQuilla: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163 (1974).

    Article  Google Scholar 

  2. 2.

    S.M. Nie and S.R. Emery: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303), 1102 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    F. Eftekhari, A. Lee, E. Kumacheva, and A.S. Helmy: Examining metal nanoparticle surface chemistry using hollow-core, photonic-crystal, fiber-assisted SERS. Opt. Lett. 37(4), 680 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    K.K. Maiti, U.S. Dinish, C.Y. Fu, J-J. Lee, K-S. Soh, S-W. Yun, R. Bhuvaneswari, M. Olivo, and Y-T. Chang: Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens. Bioelectron. 26(2), 398 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    L.H. Oakley, S.A. Dinehart, S.A. Svoboda, and K.L. Wustholz: Identification of organic materials in historic oil paintings using correlated extractionless surface-enhanced Raman scattering and fluorescence microscopy. Anal. Chem. 83(11), 3986 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    H.X. Xu, J. Aizpurua, M. Kall, and P. Apell: Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62(3), 4318 (2000).

    CAS  Article  Google Scholar 

  7. 7.

    J.P. Camden, J.A. Dieringer, Y. Wang, D.J. Masiello, L.D. Marks, G.C. Schatz, and R.P. Van Duyne: Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J. Am. Chem. Soc. 130(38), 12616 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    W.E. Doering and S.M. Nie: Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement. J. Phys. Chem. B 106(2), 311 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R.A. Tripp: Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. Nano Lett. 6(11), 2630 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    J.T. Krug, G.D. Wang, S.R. Emory, and S.M. Nie: Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals. J. Am. Chem. Soc. 121(39), 9208 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    J. Zhou, J. An, B. Tang, S. Xu, Y. Cao, B. Zhao, W. Xu, J. Chang, and J.R. Lombardi: Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement. Langmuir 24(18), 10407 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    K. Li, L. Clime, B. Cui, and T. Veres: Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays. Nanotechnology 19(14), 145305 (2008).

    Article  Google Scholar 

  13. 13.

    J. Ye, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe: Symmetry breaking induced optical properties of gold open shell nanostructures. Opt. Express 17(26), 23765 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Huang, Y. Fang, and M. Sun: Remote excitation of surface-enhanced Raman scattering on single Au nanowire with quasi-spherical termini. J. Phys. Chem. C 115(9), 3558 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Y. Wu, K. Liu, X. Li, and S. Pan: Integrate silver colloids with silicon nanowire arrays for surface-enhanced Raman scattering. Nanotechnology 22(21), 215701 (2011).

    Article  Google Scholar 

  16. 16.

    M. Sun, Z. Zhang, H. Zheng, and H. Xu: In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci. Rep. 2, 647 (2012).

    Article  Google Scholar 

  17. 17.

    K.E. Bean: Anisotropic etching of silicon. IEEE Trans. Electron Devices 25(10), 1185 (1978).

    Article  Google Scholar 

  18. 18.

    D. Bhandari, S.M. Wells, A. Polemi, I.I. Kravchenko, K.L. Shuford, and M.J. Sepaniak: Stamping plasmonic nanoarrays on SERS-supporting platforms. J. Raman Spectrosc. 42(11), 1916 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Y.J. Liu, Z.Y. Zhang, R.A. Dluhy, and Y.P. Zhao: The SERS response of semiordered Ag nanorod arrays fabricated by template oblique angle deposition. J. Raman Spectrosc. 41(10), 1112 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    G. Das, F. Mecarini, F. Gentile, F. De Angelis, H.G. Mohan Kumar, P. Candeloro, C. Liberale, G. Cuda, and E. Di Fabrizio: Nano-patterned SERS substrate: Application for protein analysis vs. temperature. Biosens. Bioelectron. 24(6), 1693 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    R. Alvarez-Puebla, B. Cui, J-P. Bravo-Vasquez, T. Veres, and H. Fenniri: Nanoimprinted SERS-active substrates with tunable surface plasmon resonances. J. Phys. Chem. C 111(18), 6720 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    M.A. Vincenti, M. Grande, G.V. Bianco, D. de Ceglia, T. Stomeo, M. De Vittorio, V. Petruzzelli, G. Bruno, A. D’Orazio, and M. Scalora: Surface-enhanced Raman scattering from finite arrays of gold nano-patches. J. Appl. Phys. 113(1), 013103–1–013103–5 (2013).

    Article  Google Scholar 

  23. 23.

    L. Wen-Chi, L. Lu-Shing, C. Yi-Hui, C. Hung-Chun, T. Din, and C. Hai-Pang: Size dependence of nanoparticle-SERS enhancement from silver film over nanosphere (AgFON) substrate. Plasmonics 6(2), 201 (2011).

    Article  Google Scholar 

  24. 24.

    Z. Xu, H-Y. Wu, S.U. Ali, J. Jiang, B.T. Cunningham, and G.L. Liu: Nanoreplicated positive and inverted submicrometer polymer pyramid array for surface-enhanced Raman spectroscopy. J. Nanophotonics 5(1), 053526 (2011).

    Article  Google Scholar 

  25. 25.

    S. Chih-Hung, N.C. Linn, and J. Peng: Templated fabrication of periodic metallic nanopyramid arrays. Chem. Mater. 19(18), 4551 (2007).

    Article  Google Scholar 

  26. 26.

    L. Tzung-Hua, N.C. Linn, L. Tarajano, J. Bin, and J. Peng: Electrochemical SERS at periodic metallic nanopyramid arrays. J. Phys. Chem. C 113(4), 1367 (2009).

    Article  Google Scholar 

  27. 27.

    M. Jin, V. Pully, C. Otto, A. van den Berg, and E.T. Carlen: High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced Raman spectroscopy. J. Phys. Chem. C 114(50), 21953 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Y.J. Liu, H.Y. Chu, and Y.P. Zhao: Silver nanorod array substrates fabricated by oblique angle deposition: Morphological, optical, and SERS characterizations. J. Phys. Chem. C 114(18), 8176 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    M. Haiyang, Q. Chuang, L. Pengpeng, and W. Wengang: SERS-active substrates based on metallic nanocracks on PDMS. Proceedings of the 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS 2011), Vol. 321 (2011).

  30. 30.

    A.M. Schwartzberg, C.D. Grant, A. Wolcott, C.E. Talley, T.R. Huser, R. Bogomolni, and J.Z. Zhang: Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. J. Phys. Chem. B 108(50), 19191 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    P.L. Stiles, J.A. Dieringer, N.C. Shah, and R.R. Van Duyne: Surface-enhanced Raman spectroscopy. In Annual Review of Analytical Chemistry, 2008; p. 601.

    Google Scholar 

  32. 32.

    Y. Kane: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Antennas Propag. 14(3), 302 (1966).

    Article  Google Scholar 

  33. 33.

    E.D. Palik: Handbook of Optical Constants of Solids: Index (Elsevier, Philadelphia, PA, 1998).

    Google Scholar 

  34. 34.

    K.C. Vernon, T.J. Davis, F.H. Scholes, D.E. Gomez, and D. Lau: Physical mechanisms behind the SERS enhancement of pyramidal pit substrates. J. Raman Spectrosc. 41(10), 1106 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    D. Li, L. Pan, S. Li, K. Liu, S. Wu, and W. Peng: Controlled preparation of uniform TiO2-catalyzed silver nanoparticle films for surface-enhanced Raman scattering. J. Phys. Chem. C 117(13), 6861 (2013).

    CAS  Article  Google Scholar 

Download references


Project supported by the National Natural Science Foundation of China (Grant Nos. 10974025, 11074029, and 61137005) and the Fundamental Research Funds for the Central Universities of China DUT13ZD107 and DUT13LK21. RL acknowledges CSC scholarship funding for financial support. The authors also acknowledge help and support from P.F. Ji, Y. Wan, Matt, and Emily on this project.

Author information



Corresponding author

Correspondence to Shi Pan.

Supplementary Material

Supplementary Material

To view supplementary material for this article, please visit

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, R., Li, H., Pan, S. et al. Surface-enhanced Raman scattering from rhodamine 6G on gold-coated self-organized silicon nanopyramidal array. Journal of Materials Research 28, 3401–3407 (2013).

Download citation