Influence of Dy on the dielectric aging and thermally stimulated depolarization current in Dy and Mn-codoped BaTiO3 multilayer ceramic capacitor


Dielectric aging of Dy and Mn-codoped BaTiO3 multilayer ceramic capacitors was investigated. The increase of Dy concentration significantly decreased the aging rate and caused a disappearance of the thermally stimulated depolarization current peak associated with the defect dipole of Mn such as \({\rm}_{{\rm{Ti}}}^{\prime \prime } {\rm{ - V}}_{\rm{O}}^{\cdot\cdot}\) or \({\rm}_{{\rm{Ti}}}^\prime {\rm{ - V}}_{\rm{O}}^{\cdot\cdot}\), which was observed in low Dy-concentration specimens. These results experimentally demonstrate that the rare earth element, Dy, decreases the concentration of the defect dipoles and thereby controls dielectric aging.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4


  1. 1.

    J. Rödel and G. Tomandl: Degradation of Mn-doped BaTiO3 ceramic under a high d.c. electric field. J. Mater. Sci. 19, 3515 (1984).

    Article  Google Scholar 

  2. 2.

    R. Waser, T. Baiatu, and K.H. Härdtl: DC electrical degradation of perovskite-type titanates: II, single crystals. J. Am. Ceram. Soc. 73, 1654 (1990).

    CAS  Article  Google Scholar 

  3. 3.

    S.H. Yoon, C.A. Randall, and K.H. Hur: Difference between resistance degradation of fixed valence acceptor (Mg) and variable valence acceptor (Mn)-doped BaTiO3 ceramics. J. Appl. Phys. 108, 064101 (2010).

    Article  Google Scholar 

  4. 4.

    H.J. Hagemann: Loss mechanisms and domain stabilization in doped BaTiO3. J. Phys. C: Solid State Phys. 11, 3333 (1978).

    CAS  Article  Google Scholar 

  5. 5.

    P.V. Lambeck and G.H. Jonker: The nature of domain stabilization in ferroelectric perovskites. J. Phys. Chem. Solids 47, 453 (1986).

    CAS  Article  Google Scholar 

  6. 6.

    W.A. Schulze and K. Ogino: Review of literature on aging of dielectrics. Ferroelectrics 87, 361 (1988).

    Article  Google Scholar 

  7. 7.

    X. Ren: Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    D.C. Lupascu, Y.A. Genenko, and N. Balke: Aging in ferroelectrics. J. Am. Ceram. Soc. 89, 224–229 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Y.A. Genenko and D.C. Lupascu: Drift of charged defects in local fields as aging mechanism in ferroelectrics. Phys. Rev. B 75, 184107 (2007).

    Article  Google Scholar 

  10. 10.

    U. Robels and G. Arlt: Domain wall clamping in ferroelectrics by orientation of defects. J. Appl. Phys. 73, 3454 (1993).

    CAS  Article  Google Scholar 

  11. 11.

    S.H. Yoon, J.S. Park, S.H. Kim, and D.Y. Kim: Thermally stimulated depolarization current analysis for the dielectric aging of Mn and V-codoped BaTiO3 multi layer ceramic capacitor. Appl. Phys. Lett. 103, 042901 (2013).

    Article  Google Scholar 

  12. 12.

    D.F.K. Hennings: Dielectric materials for sintering in reducing atmospheres. J. Eur. Ceram. Soc. 21, 1637 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    H. Kishi, Y. Mizuno, and H. Chazono: Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    C.A. Randall: Scientific and engineering issues of the state-of-the-art and future multilayer capacitors. J. Ceram. Soc. Jpn. 109, S2 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    H. Bao, J. Gao, D. Xue, C. Zhou, L. Zhang, W. Liu, and X. Ren: Control of ferroelectric aging by manipulating point defects. Ferroelectrics 401, 45 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    S.H. Yoon, C.A. Randall, and K.H. Hur: Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)-doped BaTiO3 bulk ceramics: II. Thermally stimulated depolarization current (TSDC) analysis. J. Am. Ceram. Soc. 92, 1766 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    W. Liu and C.A. Randall: Thermally stimulated relaxation in Fe-doped SrTiO3 systems: I. Single crystals. J. Am. Ceram. Soc. 91, 3245 (2008).

    CAS  Article  Google Scholar 

  18. 18.

    F.E. Kamel, P. Gonon, F. Jomni, and B. Yangui: Thermally stimulated currents in amorphous barium titanate thin films deposited by RF magnetron sputtering. J. Appl. Phys. 100, 054107 (2006).

    Article  Google Scholar 

  19. 19.

    T. Fukami, M. Kusunoki, and H. Tsuchiya: TSC study on Fe-doped barium-strontium titanate ceramics. Jpn. J. Appl. Phys. 26, 46 (1987).

    CAS  Article  Google Scholar 

  20. 20.

    J. Vanderschueren and J. Gasiot: 4. Field-induced Thermally Stimulated Currents. In Thermally Stimulated Relaxation in Solids. edited by P. Braunlich. (Springer-Verlag, Berlin/Hidelberg/New York, 1979).

    Google Scholar 

  21. 21.

    L.I. Grossweiner: A note on the analysis of first-order glow curves. J. Appl. Phys. 24, 1306 (1953).

    CAS  Article  Google Scholar 

  22. 22.

    R.R. Haering and E.N. Adams: Theory and application of thermally stimulated currents in photoconductors. Phys. Rev. 117, 451 (1960).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Seok-Hyun Yoon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yoon, SH., Lim, JB., Kim, SH. et al. Influence of Dy on the dielectric aging and thermally stimulated depolarization current in Dy and Mn-codoped BaTiO3 multilayer ceramic capacitor. Journal of Materials Research 28, 3252–3256 (2013).

Download citation