Skip to main content
Log in

Surface activity of antiperovskite manganese nitrides

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Antiperovskite manganese nitrides Mn3MN (M = Zn, Ni, Cu…) have been extensively studied in the past decade due to their many interesting properties, such as negative thermal expansion. To get a better understanding of the origin of these phenomena, the information from the microscopic scale is necessary, so we performed systematic transmission electron microscopic study of Mn3Zn0.8Ni0.2N and found that the sample particle is wrapped in a thin MnO layer. The same result was also found in Mn3Zn0.5Ni0.5N and Mn3ZnN, indicating that it is a common phenomenon in this kind of compound. The presence of the MnO surface layer was also confirmed by the macroscopic XPS measurements. Our study suggests that M is easier to be lost than Mn in manganese nitrides Mn3MN (M = Zn, Ni, Cu…), and this character is much more obvious on the surface, i.e., this kind of compound has a strong surface activity. Figure 6 could best represent this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

REFERENCES

  1. R. Prozorov, A. Snezhko, T. He, and R.J. Cava: Evidence for unconventional superconductivity in the nonoxide perovskite MgCNi3 from penetration depth measurements. Phys. Rev. B 68, 18 (2003).

    Article  Google Scholar 

  2. K. Kamishima, T. Goto, H. Nakagawa, N. Miura, M. Ohashi, N. Mori, T. Sasaki, and T. Kanomata: Giant magnetoresistance in the intermetallic compound Mn3GaC. Phys. Rev. B 63, 2 (2000).

    Article  Google Scholar 

  3. E.O. Chi, W.S. Kim, and N.H. Hur: Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3. Solid State Commun. 120, 7–8 (2001).

    Article  Google Scholar 

  4. Y. Sun, C. Wang, L. Chu, Y. Wen, M. Nie, and F. Liu: Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn3NiN compound. Scr. Mater. 62, 9 (2010).

    Article  Google Scholar 

  5. K. Asano, K. Koyama, and K. Takenaka: Magnetostriction in Mn3CuN. Appl. Phys. Lett. 92, 16 (2008).

    Article  Google Scholar 

  6. Y.S. Sun, Y.F. Guo, X.X. Wang, Y. Tsujimoto, Y. Matsushita, Y.G. Shi, C. Wang, A.A. Belik, and K. Yamaura: Resistive switching phenomenon driven by antiferromagnetic phase separation in an antiperovskite nitride Mn3ZnN. Appl. Phys. Lett. 100, 16 (2012).

    Google Scholar 

  7. M.R. Fruchart, R. Madar, M. Barberon, M.E. Fruchart, and M.G. Lorthioir, Transitions magnétiques et déformations cristallographiques associées dans les nitrures du type perowskite ZnMn3N et SnMn3N. J. Phys. Colloques 32, C1-982–C1–984 (1971).

    Google Scholar 

  8. W.S. Kim, E.O. Chi, J.C. Kim, N.H. Hur, K.W. Lee, and Y.N. Choi: Cracks induced by magnetic ordering in the antiperovskite ZnNMn3. Phys. Rev. B 68, 17 (2003).

    Google Scholar 

  9. T. Hamada and K. Takenaka: Phase instability of magnetic ground state in antiperovskite Mn3ZnN: Giant magnetovolume effects related to magnetic structure. J. Appl. Phys. 111, 7 (2012).

    Article  Google Scholar 

  10. Y. Sun, C. Wang, Y. Wen, K. Zhu, and J. Zhao: Lattice contraction and magnetic and electronic transport properties of Mn3Zn1−xGexN. Appl. Phys. Lett. 91, 23 (2007).

    Google Scholar 

  11. W.S. Kim, E.O. Chi, J.C. Kim, H.S. Choi, and N.H. Hur: Close correlation among lattice, spin, and charge in the manganese-based antiperovskite material. Solid State Commun. 119, 8–9 (2001).

    Google Scholar 

  12. B.Y. Qu and B.C. Pan: Nature of the negative thermal expansion in antiperovskite compound Mn3ZnN. J. Appl. Phys. 108, 11 (2010).

    Google Scholar 

  13. Y. Sun, C. Wang, L. Chu, Y. Wen, Y. Na, M. Nie, and X. Chen: Ni-doping effect on the magnetic transition and correlated lattice contraction in antiperovskite Mn3ZnN compounds. Solid State Commun. 152, 6 (2012).

    Google Scholar 

  14. J.Y. Hu, Y. Sun, W. Cong, Q. Zhao, S.J. Zhang, Q.H. Zhang, Y.C. Li, J. Liu, C.Q. Jin, and R.C. Yu: Synchrotron radiation X-ray diffraction study on Mn3Zn0.8Ni0.2N under high pressure. Chin. J. High Pressure Phys. 26, 6 (2012) [in Chinese].

    Google Scholar 

  15. S. Meenakshi, V. Vijayakumar, A. Lausi, and E. Busetto: High pressure behaviour of GaCMn3. Solid State Commun. 140, 500 (2006).

    Article  CAS  Google Scholar 

  16. C. Wang, L. Chu, Q. Yao, Y. Sun, M. Wu, L. Ding, J. Yan, Y. Na, W. Tang, G. Li, Q. Huang, and J.W. Lynn: Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn, M)x N(M = Ag, Ge). Phys. Rev. B 85, 220103 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2012CB932302) and the National Natural Science Foundation of China (Grant No. 11174336).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richeng Yu or Cong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Sun, Y., Shi, Z. et al. Surface activity of antiperovskite manganese nitrides. Journal of Materials Research 28, 3245–3251 (2013). https://doi.org/10.1557/jmr.2013.344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.344

Navigation