Increased conductivity of polymerized ionic liquids through the use of a nonpolymerizable ionic liquid additive

Abstract

In the present study, polymerizable ionic liquids (ILs), 1-[n-(methacryloyloxy)alkyl]-3-methylimidazolium bromides (n = 2, 6, 7, or 10), were synthesized in high yields. Moreover, the compounds obtained (n = 6, 7, or 10) were used in the preparation of composite materials comprising a polymerized IL matrix and a nonpolymerizable IL additive, 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) in various proportions (up to 75% vol/vol of [EMIM][BF4]). The UV-radiation-initiated photopolymerization process was monitored in situ by measuring the resistivities of the mixtures. An increase in [EMIM][BF4] content in the composites led to an increase in the ionic conductivities of the materials while retaining their solid state at levels as high as 40% vol/vol of the [EMIM][BF4] content. The 40% vol/vol composites had conductivities of approximately 10−4 S/cm compared to the conductivities of 10−5 S/cm for the corresponding neat polymerized ILs. Above this [EMIM][BF4] content, the materials were sticky gels, and from 50% vol/vol onwards, entirely liquid.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE I.
FIG. 6.
FIG. 7.
SCHEME 1.

REFERENCES

  1. 1.

    B. Kirchner: Topics in Current Chemistry: Ionic Liquids, Vol. 290 (Springer, Heidelberg, Germany, 2010), p. 345.

    Google Scholar 

  2. 2.

    M. Freemantle: An Introduction to Ionic Liquids (RSC Publishing, Cambridge, UK, 2010), p. 281.

    Google Scholar 

  3. 3.

    P. Wasserscheid and T. Welton: Ionic Liquids in Synthesis (Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, 2002), p. 364.

    Google Scholar 

  4. 4.

    M. Galinski, A. Lewandowski, and I. Stepniak: Ionic liquids as electrolytes. Electrochim. Acta 51(26), 5567 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, and T. Aida: Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300(5628), 2072 (2003).

    CAS  Article  Google Scholar 

  6. 6.

    R.P. Swatloski, S.K. Spear, J.D. Holbrey, and R.D. Rogers: Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124(18), 4974 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    H. Olivier-Bourbigou, L. Magna, and D. Morvan: Ionic liquids and catalysis: Recent progress to knowledge. Appl. Catal., A 373(1–2), 1 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    J.L. Anderson, D.W. Armstrong, and G-T. Wei: Ionic liquids in analytical chemistry. Anal. Chem. 78(9), 2893 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, and B. Scrosati: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8(8), 621 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    Y-S. Ye, J. Rick, and B-J. Hwang: Ionic liquids polymer electrolytes. J. Mater. Chem. A 1(8), 2719 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    T.P. Lodge: Materials science: A unique platform for materials design. Science 321(5885), 50 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    J. Yuan and M. Antonietti: Poly(ionic liquid)s: Polymers expanding classical property profiles. Polymer 52(7), 1469 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    H. Ohno and K. Ito: Room-temperature molten salt polymers as a matrix for fast ion conduction. Chem. Lett. 27(8), 751 (1998).

    Article  Google Scholar 

  14. 14.

    H. Ohno: Design of ion conductive polymers based on ionic liquids. Macromol. Symp. 249–250, 551 (2007).

    Article  CAS  Google Scholar 

  15. 15.

    D. Mecerreyes: Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 36(12), 1629 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    J. Tang, H. Tang, W. Sun, M. Radosz, and Y. Shen: Low pressure CO2 sorption in ammonium-based poly(ionic liquid)s. Polymer 46(26), 12460 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    R. Marcilla, J.A. Blazquez, R. Fernandez, H. Grande, J.A. Pomposo, and D. Mecerreyes: Synthesis of novel polycations using the chemistry of ionic liquids. Macromol. Chem. Phys. 206(2), 299 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    W. Ogihara, S. Washiro, H. Nakajima, and H. Ohno: Effect of cation structure on the electrochemical and thermal properties of ion conductive polymers obtained from polymerizable ionic liquids. Electrochim. Acta 51(13), 2614 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    N.V. Tsarevsky and K. Matyjaszewski: “Green” atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chem. Rev. 107(6), 2270 (2007).

    CAS  Article  Google Scholar 

  20. 20.

    H. Mori, M. Yahagi, and T. Endo: RAFT polymerization of N-vinylimidazolium salts and synthesis of thermoresponsive ionic liquid block co-polymers. Macromolecules 42(21), 8082 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Y.S. Vygodskii, A.S. Shaplov, E.I. Lozinskaya, K.A. Lyssenko, D.G. Golovanov, I.A. Malyshkina, N.D. Gavrilova, and M.R. Buchmeiser: Conductive polymer electrolytes derived from poly(norbornene)s with pendant ionic imidazolium moieties. Macromol. Chem. Phys. 209(1), 40 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    O. Green, S. Grubjesic, S. Lee, and M.A. Firestone: The design of polymeric ionic liquids for the preparation of functional materials. Polym. Rev. 49(4), 339 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    O. Azzaroni, A.A. Brown, and W.T.S. Huck: Tuneable wettability by clicking counterions into polyelectrolyte brushed. Adv. Mater. 19(1), 151 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    Q. Zhang, X. Lu, Y. Qiao, L. Zhang, D-L. Liu, W. Zhang, G-X. Han, and X-M. Song: Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a polymeric ionic liquid film. Electroanalysis 22(9), 1000 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    J. Tang, W. Sun, H. Tang, M. Radosz, and Y. Shen: Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38(6), 2037 (2005).

    CAS  Article  Google Scholar 

  26. 26.

    Q. Zhao and J.L. Anderson: Highly selective GC stationary phases consisting of binary mixtures of polymeric ionic liquids. J. Sep. Sci. 33(1), 79 (2010).

    Article  CAS  Google Scholar 

  27. 27.

    S. Washiro, M. Yoshizawa, H. Nakajima, and H. Ohno: Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer 45(5), 1577 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    H. Ohno: Electrochemical Aspects of Ionic Liquids (John Wiley & Sons, Inc., New York, 2005), p. 392.

    Google Scholar 

  29. 29.

    R. Marcilla, F. Alcaide, H. Sardon, J. A. Pomposo, C. Pozo-Gonzalo, and D. Mecerreyes: Tailor-made polymer electrolytes based upon ionic liquid and their application in-all plastic electrochromic devices. Electrochem. Commun. 8(3), 482 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    N.S. Allen: Photoinitiators for UV and visible curing of coatings: Mechanisms and properties. J. Photochem. Photobiol., A 100(1–3), 101 (1996).

    CAS  Article  Google Scholar 

  31. 31.

    D. Barta, S. Seifert, and M.A. Firestone: The effect of cation structure on the mesophase architecture of self-assembled and polymerized imidazolium-based ionic liquids. Macromol. Chem. Phys. 208(13), 1416 (2007).

    Article  CAS  Google Scholar 

  32. 32.

    T. Nakashima, M. Sakashita, Y. Nonoguchi, and T. Kawai: Sensitized photopolymerization of an ionic liquid-based monomer by using CdTe nanocrystals. Macromolecules 40(18), 6540 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    K. Põhako-Esko, T. Taaber, K. Saal, R. Lõhmus, I. Kink, and U. Mäeorg: New method for synthesis of methacrylate type polymerizable ionic liquids. Synth. Commun. 43(21), 2846 (2013).

    Article  CAS  Google Scholar 

  34. 34.

    S.K. Kang, W.S. Kim, and B.H. Moon: An effective method for the preparation of ω-bromoalkanols from α,ω-diols. Synthesis 1985(12), 1161 (1985).

    Article  Google Scholar 

  35. 35.

    S. Ding, H. Tang, M. Radosz, and Y. Shen: Atom transfer radical polymerization of ionic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate. J. Polym. Sci., Part A: Polym. Chem. 42(22), 5794 (2004).

    CAS  Article  Google Scholar 

  36. 36.

    H. Chen, J-H. Choi, D. Salas-de la Cruz, K.I. Winey, and Y.A. Elabd: Polymerized ionic liquids: The effect of random co-polymer composition on ion conduction. Macromolecules 42(13), 4809 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    S. Srinivasan, M.W. Lee, M.C. Grady, M. Soroush, and A.M. Rappe: Self-initiation mechanism in spontaneous thermal polymerization of ethyl and n-butyl acrylate: A theoretical study. J. Phys. Chem. A 114(30), 7975 (2010).

    CAS  Article  Google Scholar 

  38. 38.

    F.R. Mayo: Chain transfer in the polymerization of styrene. VIII. Chain transfer in bromobenzene and mechanism of thermal initiation. J. Am. Chem. Soc. 75, 6133 (1953).

    CAS  Article  Google Scholar 

  39. 39.

    V. Jovanovski, R. Marcilla, and D. Mecerreyes: Tuning the properties of functional pyrrolidinium polymers by co-polymerization of diallyldimethylammonium ionic liquids. Macromol. Rapid Commun. 31(18), 1646 (2010).

    CAS  Article  Google Scholar 

  40. 40.

    A. Jarosik, S.R. Krajewski, A. Lewandowski, and P. Radzimski: Conductivity of ionic liquids in mixtures. J. Mol. Liq. 123(1), 43 (2006).

    CAS  Article  Google Scholar 

  41. 41.

    H. Niedermeyer, J.P. Hallett, I.J. Villar-Garcia, P.A. Hunt, and T. Welton: Mixtures of ionic liquids. Chem. Soc. Rev. 41(23), 7780 (2012).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the Estonian Science Foundation (Grant Nos. 8428 and 8794), Estonian Ministry of Education and Research (targeted Grant No. SF0180058s07), the European Regional Development Fund (Center of Excellence, Mesosystems: Theory and Applications, TK114; and “TRIBOFILM” 3.2.1101.12-0028), and the graduate school “Functional materials and technologies,” which received funding from the European Social Fund under Grant No. 1.2.0401.09-0079 in Estonia. The authors would like to acknowledge the NordForsk (Excellent Nordic Chemistry) for support. The authors also thank Silver Leinberg for his help with resistivity measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kaija Põhako-Esko.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Põhako-Esko, K., Timusk, M., Saal, K. et al. Increased conductivity of polymerized ionic liquids through the use of a nonpolymerizable ionic liquid additive. Journal of Materials Research 28, 3086–3093 (2013). https://doi.org/10.1557/jmr.2013.330

Download citation