An investigation of metallurgical bonding in Al–7Si/gray iron bimetal composites

Abstract

Al–7Si/gray iron bimetal composites with a sound metallurgical bonding were obtained by a gravity die casting process. The surface treatments of the gray iron specimen including fluxing and hot dipping were applied to forming a complete metallurgical bonding layer at the Al–7Si/gray iron interface. In addition, the effect of Mn in dipping bath on the microstructure of the Al–7Si/gray iron interfacial bond zone has been studied in an Al–7Si alloy containing five different levels of Mn ranging from 0 to 5 wt%. Microstructure analysis indicates that addition of Mn in dipping bath can eliminate the harmful needle-like phase (β-Al5FeSi) as the Mn content is no less than 1.5 wt% and also plays an important role in facilitating the growth of intermetallic phases [α-Al15(FexMn1−x)3Si2] and the metallurgical bonding layer. The sound metallurgical bonding formed at the Al–7Si/gray iron interface is attributed to combining the effect of surface treatments and selection of Mn content.

This is a preview of subscription content, access via your institution.

TABLE I.
FIG. 1.
FIG. 2.
TABLE II.
FIG. 3.
FIG. 4.
TABLE III.
FIG. 5.

REFERENCES

  1. 1.

    Y. Yang, X.M. Zhang, Z.H. Li, and Q.Y. Li: Adiabatic shear band on the titanium side in the Ti/mild steel explosive cladding interface. Acta Mater. 44, 561 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    M. Abbasi, A. Karimi Taheri, and M.T. Salehi: Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process. J. Alloys Compd. 319, 233 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    G. Durrant, M. Gallerneault, and B. Cantor: Squeeze cast aluminium reinforced with mild steel inserts. J. Mater. Sci. 31, 589 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    N. Kahraman, B. Gulenc, and F. Findik: Joining of titanium/stainless steel by explosive welding and effect on interface. J. Mater. Process. Technol. 169, 127 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    L.Y. Sheng, F. Yang, T.F. Xi, C. Lai, and H.Q. Ye: Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling. Composites Part B 42, 1468 (2011).

    Article  Google Scholar 

  6. 6.

    P. He, X. Yue, and J.H. Zhang: Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer. Mater. Sci. Eng., A 486, 171 (2008).

    Article  Google Scholar 

  7. 7.

    M. Paramsothy, N. Srikanth, and M. Gupta: Solidification processed Mg/Al bimetal macrocomposite: Microstructure and mechanical properties. J. Alloys Compd. 461, 200 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    W.B. Lee, K.S. Bang, and S.B. Jung: Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing. J. Alloys Compd. 390, 212 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    J.C. Viala, M. Peronnet, F. Barbeau, F. Bosselet, and J. Bouix: Interface chemistry in aluminium alloy castings reinforced with iron base inserts. Composites Part A 33, 1417 (2002).

    Article  Google Scholar 

  10. 10.

    K. Bouche, F. Barbier, and A. Coulet: Intermetallic compound layer growth between solid iron and molten aluminium. Mater. Sci. Eng., A 249, 167 (1998).

    Article  Google Scholar 

  11. 11.

    A. Bouayad, C. Gerometta, A. Belkebir, and A. Ambari: Kinetic interactions between solid iron and molten aluminium. Mater. Sci. Eng., A 363, 53 (2003).

    Article  Google Scholar 

  12. 12.

    D. Naoi and M. Kajihara: Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures. Mater. Sci. Eng., A 459, 375 (2007).

    Article  Google Scholar 

  13. 13.

    N.A. El-Mahallawy, M.A. Taha, and M.A. Shoeib: Analysis of reaction layer formed on steel strips during hot dip aluminizing. Mater. Sci. Technol. 18, 1201 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    M. Sacerdote-Peronnet, E. Guiot, F. Bosselet, O. Dezellus, D. Rouby, and J.C. Viala: Local reinforcement of magnesium base castings with mild steel inserts. Mater. Sci. Eng., A 445–446, 296 (2007).

    Article  Google Scholar 

  15. 15.

    W.J. Cheng and C.J. Wang: Effect of silicon on the formation of intermetallic phases in aluminide coating on mild steel. Intermetallics 19, 1455 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    S. Pietrowski and T. Szymczak: Effect of silicon concentration in bath on the structure and thickness of grey cast iron coating after alphinising. Arch. Mater. Sci. Eng. 28, 437 (2007).

    Google Scholar 

  17. 17.

    H. Springer, A. Kostka, E.J. Payton, D. Raabe, A. Kaysser-Pyzalla, and G. Eggeler: On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys. Acta Mater. 59, 1586 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    M.D. Cameron, J.A. Taylor, and A.K. Dahle: As-cast morphology of iron-intermetallics in Al–Si foundry alloys. Scr. Mater. 53, 955 (2005).

    Article  Google Scholar 

  19. 19.

    Z. Ma, A.M. Samuel, F.H. Samuel, H.W. Doty, and S. Valtierra: A study of tensile properties in Al–Si–Cu and Al–Si–Mg alloys: Effect of β-iron intermetallics and porosity. Mater. Sci. Eng., A 490, 36 (2008).

    Article  Google Scholar 

  20. 20.

    S. Seifeddine and I.L. Svensson: The influence of Fe and Mn content and cooling rate on the microstructure and mechanical properties of A380-die casting alloys. Metal. Sci. Technol. 27, 11 (2009).

    CAS  Google Scholar 

  21. 21.

    S.G. Shabestari: The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys. Mater. Sci. Eng., A 383, 289 (2004).

    Article  Google Scholar 

  22. 22.

    J.E. Tibballs, J.A. Horst, and C.J. Simensen: Precipitation of α-Al(Fe, Mn)Si from the melt. J. Mater. Sci. 36, 937 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    W. Małgorzata, R. Krystyna, and S. Jan: The course of the peritectic transformation in the, Al-rich Al–Fe–Mn–Si alloys. J. Mater. Process. Technol. 162–163, 422 (2005).

    Google Scholar 

  24. 24.

    T.H. Cook: Composition, testing, and control of hot dip galvanizing flux. Met. Finish. 101, 22 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    E. Balitchev, T. Jantzen, I. Hurtado, and D. Neuschutz: Thermodynamic assessment of the quaternary system Al–Fe–Mn–Si in the Al-rich corner. Calphad 27, 275 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    M.V. Akdeniz and A.O. Mekhrabov: The effect of substitutional impurities on the evolution of Fe-Al diffusion layer. Acta Mater. 46, 1185 (1998).

    CAS  Article  Google Scholar 

  27. 27.

    E. Schubert, M. Klassen, I. Zerner, C. Walz, and G. Sepold: Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry. J. Mater. Process. Technol. 115, 2 (2001).

    Article  Google Scholar 

  28. 28.

    L.F. Mondolfo: Manganese in Aluminum Alloys (The Manganese Center Paris, Paris, France, 1978).

    Google Scholar 

  29. 29.

    S. Chatterji: On the applicability of Fick’s second law to chloride ion migration through portland cement concrete. Cem. Concr. Res. 25, 299 (1995).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was carried out with the financial support from the National Natural Science Foundation of China (Grant No. 50831003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiufang Bian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Y., Bian, X., Yang, J. et al. An investigation of metallurgical bonding in Al–7Si/gray iron bimetal composites. Journal of Materials Research 28, 3190–3198 (2013). https://doi.org/10.1557/jmr.2013.328

Download citation

Keywords

  • joining
  • composite
  • microstructure