Skip to main content
Log in

Benzoxazine resin and their nanostructured composites cure kinetic by DSC

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Benzoxazine resins are a new class of thermosetting phenolic resins that have emerged in recent decades, overcoming the traditional properties of epoxy and phenolic resins applied in the aerospace industry. The incorporation of low mass concentration of carbon nanotube (CNT) in polymer matrices can produce structural materials with superior properties. Thus, this work aims to prepare nanostructured composite benzoxazine resin/CNT and to evaluate the cure kinetic study by differential scanning calorimetry of neat benzoxazine resin and their nanostructured composites produced. Calculations of the activation energy, the reaction order, and kinetic constants are performed by a nonisothermal procedure. In general, it was observed that CNTs act as catalysts for curing the benzoxazine matrix without affecting the initial and final cure temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.

Similar content being viewed by others

REFERENCES

  1. S.B. Shen: Development and characterization of high-perfomance polybenzoxazines, and related composites. Ph.D. Thesis. Case Western Reserve University OH, 1995.

    Google Scholar 

  2. A.C. Pereira: Benzoxazine resin and their nanostructured composites cure kinetic and thermal properties studies. Master of Science Thesis, UNESP São Paulo, Brazil, 2011. (in portuguese).

    Google Scholar 

  3. T. Agag and T. Takeich: High-molecular-weight AB-type benzoxazine as new precursor for high-performance thermosets. J. Polym. Sci. 45, 1878 (2006).

    Article  Google Scholar 

  4. M. Nakamura and H. Ishida: Synthesis and properties of a new crosslinkage telechelics with benzoxazine moiety at the chain end. Polymer 50, 2688 (2009).

    Article  CAS  Google Scholar 

  5. A. Chernykh, J. Liu, and H. Ishida: Synthesis and properties of a new crosslinkage polymer containing benzoxazine moiety in the main chain. Polymer 47, 7664–7669 (2006).

    Article  CAS  Google Scholar 

  6. H. Ishida and Y. Rodriguez: Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry. Polymer 36, 3151–3158 (1995).

    Article  CAS  Google Scholar 

  7. C. Jubsilp, K. Punson, T. Takeichi, and S. Rimdusit: Curing kinetics of benzoxazine-epoxy copolymer investigated by non-isothermal differential scanning calorimetry. Polym. Degrad. Stab. 95, 918–924 (2010).

    Article  CAS  Google Scholar 

  8. N.N. Ghosh, B. Kiskan, and Y. Yagci: Polybenzoxazines - new high performance thermosetting resins: Synthesis and properties. Prog. Polym. Sci. 32, 1344–1391 (2007).

    Article  CAS  Google Scholar 

  9. A. Chernykh, T. Agag, and H. Ishida: Synthesis of linear polymer containing benzoxazine moieties in the chain with high molecular design versatility via click reaction. Polymer 50, 382–390 (2009).

    Article  CAS  Google Scholar 

  10. H. Ishida and D.J. Allen: Physical and mechanical characterization of near-zero shrinkage polybenzaxazines. J. Polym. Sci. 34, 1019–1030 (1996).

    Article  CAS  Google Scholar 

  11. H. Ishida and D.J. Allen: Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 34, 4487–4495 (1996).

    Article  Google Scholar 

  12. T. Takeichi and T. Agag: High performance polybenzoxazines as novel thermosets. Polymer 18, 777–797 (2006).

    CAS  Google Scholar 

  13. B. Kiskan, B. Aydogan, and Y. Yagci: Synthesis, characterization, and thermally activated curing of oligosiloxanes containing benzoxazine moieties in the main chain. J. Polym. Sci. 47, 804–811 (2009).

    Article  CAS  Google Scholar 

  14. B. Kiskan, N.N. Ghosh, and Y. Yagci: Polybenzoxazine - based composite as high-performance materials. Polym. Int. Soc. Chem. Ind. 60, 167–177 (2010).

    Google Scholar 

  15. K.S. Santhosh Kumar, C.P. Reghunadhan Nair, and K.N. Ninan: Rheokinetic investigations on the thermal polymerization of benzoxazine monomer. Thermochim. Acta 441, 150–155 (2006).

    Article  CAS  Google Scholar 

  16. C.O. Oriakhi: Polymer nanocomposition approach to advanced materials. J. Chem. Educ. 77, 1138–1146 (2000).

    Article  CAS  Google Scholar 

  17. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  18. B. Fiedler, F.H. Gojny, M.H.G. Wichmann, M.C.M. Nolte, and K. Schulte: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66, 3115–3125 (2006).

    Article  CAS  Google Scholar 

  19. K. Awasthi, A. Srivastava, and O.N. Srivastava: Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1616–1636 (2005).

    Article  CAS  Google Scholar 

  20. M. Moniruzzaman, F. Du, N. Romero, and K.I. Winey: Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method. Polymer 47, 293–298 (2006).

    Article  CAS  Google Scholar 

  21. M.J. Green, N. Behabtu, M. Pasquali, and W.W. Adams: Nanotubes as polymers. Polymer 50, 4979–4997 (2009).

    Article  CAS  Google Scholar 

  22. E.T. Thostenson, Z. Ren, and T.W. Chou: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001).

    Article  CAS  Google Scholar 

  23. P.M. Ajayan: Nanotubes from carbon. Chem. Rev. 99, 1787–1799 (1999).

    Article  CAS  Google Scholar 

  24. M. Moniruzzaman and K.I. Winey: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006).

    Article  CAS  Google Scholar 

  25. Q. Chen, R.W. Xu, and D.S. Yu: Multiwalled carbon nanotube/polybenzoxazine nanocomposites: Preparation, characterization and properties. Polymer 47, 7711–7719 (2006).

    Article  CAS  Google Scholar 

  26. L. Yang, C. Zhang, S. Pilla, and S. Gong: Polybenzoxazine-core shell rubber-carbon nanotube nanocomposites. Composites Part A 39, 1653–1659 (2008).

    Article  Google Scholar 

  27. J.M. Huang, M.F. Tsai, S.J. Yang, and W.M. Chiu: Preparation and thermal properties of multiwalled carbon nanotube/polybenzoxazine nanocomposites. J. Appl. Polym. Sci. 122, 1898–1904 (2011).

    Article  CAS  Google Scholar 

  28. Y.H. Liu, B. Wang, and X.L. Jing: Thermal properties of hyperbranched polyborate functionalized multiwall carbon nanotube/polybenzoxazine composites. Polym. Compos. 32, 1352–1361 (2011).

    Article  CAS  Google Scholar 

  29. Y.H. Wang, C.M. Chang, and Y.L. Liu: Benzoxazine-functionalized multi-walled carbon nanotubes for preparation of electrically-conductive polybenzoxazines. Polymer 53, 106–112 (2012).

    Article  CAS  Google Scholar 

  30. M. Chapartegui, J. Barcena, X. Irastorza, C. Elizetxea, E. Fiamegkou, V. Kostopoulos, and A. Santamaria: Manufacturing, characterization and thermal conductivity of epoxy and benzoxazine multi-walled carbon nanotube buckypaper composites. J. Compos. Mater. 47, 1705–1715 (2013).

    Article  Google Scholar 

  31. F.O. Untem, E.C. Botelho, M.C. Rezende, and M.L. Costa: Benzoxazine resin/carbon nanotube nanostructured composite’s degradation kinetic. J. Nanosci. Nanotechnol. 13, 1–6 (2013).

    Article  Google Scholar 

  32. M.L. Costa, J.M.F. Paiva, E.C. Botelho, and M.C. Rezende: Thermal stability evaluation and glass transition temperature of differential aeronautical polymeric composites. Polym. Plast. Technol. Eng. 45, 1143 (2006).

    Article  CAS  Google Scholar 

  33. R.B. Prime: Thermosets in Thermal Characterization of Polymeric Materials; E.A. Turi ed.; Academic Press, New York, 1981.

  34. A.C. Loos and G.S. Springer: Curing of grafite/epoxy composites. Washington NASA, AFWAL-TR-83–4040 (1983)

    Book  Google Scholar 

  35. N. Sbirrazzuoli and S. Vyazovkin: Learning about epoxy cure mechanism from isoconversional analysis of DSC data. Thermochim. Acta 388, 289–298 (2002).

    Article  CAS  Google Scholar 

  36. T. Ozawa: A new method of analyzing TG data. Anal. Chem. 38, 1881 (1965).

    CAS  Google Scholar 

  37. K. Kishore, V.R.P. Vermeker, and K. Mohan: Differential scanning calorimetric studies on ammonium perchlorate. Thermochim. Acta 13, 277 (1975).

    Article  CAS  Google Scholar 

  38. American Society for Testing and Material. ASTM E 2070: Standard test method for kinetic parameters by differential scanning calorimetry using isothermal methods. US (2008).

    Google Scholar 

  39. V.M.A. Calado and S.G. Advani: Thermoset resin cure kinetics and rheology. In Processing of Composites; R.S. Davé and A.C. Loos ed. (Hanser Publishers, Munich, Germany, 2000); pp. 32–107.

    Chapter  Google Scholar 

  40. American Society for Testing and Material. ASTM E 2041: Standard test method for estimating kinetic parameters by differential scanning calorimeter using the Borchardt and Daniels method. US (2008).

    Google Scholar 

  41. Y. Wang and H. Ishida. Development of low-viscosity benzoxazine resins and their polymers. J. Appl. Polym. Sci. 86, 2953 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors thank CAPES, FAPESP, and CNPq (Process 151154/2009-0) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cirlene Fourquet Bandeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandeira, C.F., Pereira, A.C., Botelho, E.C. et al. Benzoxazine resin and their nanostructured composites cure kinetic by DSC. Journal of Materials Research 28, 3094–3099 (2013). https://doi.org/10.1557/jmr.2013.327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.327

Keywords

Navigation