Benzoxazine resin and their nanostructured composites cure kinetic by DSC

Abstract

Benzoxazine resins are a new class of thermosetting phenolic resins that have emerged in recent decades, overcoming the traditional properties of epoxy and phenolic resins applied in the aerospace industry. The incorporation of low mass concentration of carbon nanotube (CNT) in polymer matrices can produce structural materials with superior properties. Thus, this work aims to prepare nanostructured composite benzoxazine resin/CNT and to evaluate the cure kinetic study by differential scanning calorimetry of neat benzoxazine resin and their nanostructured composites produced. Calculations of the activation energy, the reaction order, and kinetic constants are performed by a nonisothermal procedure. In general, it was observed that CNTs act as catalysts for curing the benzoxazine matrix without affecting the initial and final cure temperatures.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.

REFERENCES

  1. 1.

    S.B. Shen: Development and characterization of high-perfomance polybenzoxazines, and related composites. Ph.D. Thesis. Case Western Reserve University OH, 1995.

    Google Scholar 

  2. 2.

    A.C. Pereira: Benzoxazine resin and their nanostructured composites cure kinetic and thermal properties studies. Master of Science Thesis, UNESP São Paulo, Brazil, 2011. (in portuguese).

    Google Scholar 

  3. 3.

    T. Agag and T. Takeich: High-molecular-weight AB-type benzoxazine as new precursor for high-performance thermosets. J. Polym. Sci. 45, 1878 (2006).

    Article  Google Scholar 

  4. 4.

    M. Nakamura and H. Ishida: Synthesis and properties of a new crosslinkage telechelics with benzoxazine moiety at the chain end. Polymer 50, 2688 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    A. Chernykh, J. Liu, and H. Ishida: Synthesis and properties of a new crosslinkage polymer containing benzoxazine moiety in the main chain. Polymer 47, 7664–7669 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    H. Ishida and Y. Rodriguez: Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry. Polymer 36, 3151–3158 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    C. Jubsilp, K. Punson, T. Takeichi, and S. Rimdusit: Curing kinetics of benzoxazine-epoxy copolymer investigated by non-isothermal differential scanning calorimetry. Polym. Degrad. Stab. 95, 918–924 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    N.N. Ghosh, B. Kiskan, and Y. Yagci: Polybenzoxazines - new high performance thermosetting resins: Synthesis and properties. Prog. Polym. Sci. 32, 1344–1391 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    A. Chernykh, T. Agag, and H. Ishida: Synthesis of linear polymer containing benzoxazine moieties in the chain with high molecular design versatility via click reaction. Polymer 50, 382–390 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    H. Ishida and D.J. Allen: Physical and mechanical characterization of near-zero shrinkage polybenzaxazines. J. Polym. Sci. 34, 1019–1030 (1996).

    CAS  Article  Google Scholar 

  11. 11.

    H. Ishida and D.J. Allen: Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 34, 4487–4495 (1996).

    Article  Google Scholar 

  12. 12.

    T. Takeichi and T. Agag: High performance polybenzoxazines as novel thermosets. Polymer 18, 777–797 (2006).

    CAS  Google Scholar 

  13. 13.

    B. Kiskan, B. Aydogan, and Y. Yagci: Synthesis, characterization, and thermally activated curing of oligosiloxanes containing benzoxazine moieties in the main chain. J. Polym. Sci. 47, 804–811 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    B. Kiskan, N.N. Ghosh, and Y. Yagci: Polybenzoxazine - based composite as high-performance materials. Polym. Int. Soc. Chem. Ind. 60, 167–177 (2010).

    Google Scholar 

  15. 15.

    K.S. Santhosh Kumar, C.P. Reghunadhan Nair, and K.N. Ninan: Rheokinetic investigations on the thermal polymerization of benzoxazine monomer. Thermochim. Acta 441, 150–155 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    C.O. Oriakhi: Polymer nanocomposition approach to advanced materials. J. Chem. Educ. 77, 1138–1146 (2000).

    CAS  Article  Google Scholar 

  17. 17.

    S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    CAS  Article  Google Scholar 

  18. 18.

    B. Fiedler, F.H. Gojny, M.H.G. Wichmann, M.C.M. Nolte, and K. Schulte: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66, 3115–3125 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    K. Awasthi, A. Srivastava, and O.N. Srivastava: Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1616–1636 (2005).

    CAS  Article  Google Scholar 

  20. 20.

    M. Moniruzzaman, F. Du, N. Romero, and K.I. Winey: Increased flexural modulus and strength in SWNT/epoxy composites by a new fabrication method. Polymer 47, 293–298 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    M.J. Green, N. Behabtu, M. Pasquali, and W.W. Adams: Nanotubes as polymers. Polymer 50, 4979–4997 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    E.T. Thostenson, Z. Ren, and T.W. Chou: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001).

    CAS  Article  Google Scholar 

  23. 23.

    P.M. Ajayan: Nanotubes from carbon. Chem. Rev. 99, 1787–1799 (1999).

    CAS  Article  Google Scholar 

  24. 24.

    M. Moniruzzaman and K.I. Winey: Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 5194–5205 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    Q. Chen, R.W. Xu, and D.S. Yu: Multiwalled carbon nanotube/polybenzoxazine nanocomposites: Preparation, characterization and properties. Polymer 47, 7711–7719 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    L. Yang, C. Zhang, S. Pilla, and S. Gong: Polybenzoxazine-core shell rubber-carbon nanotube nanocomposites. Composites Part A 39, 1653–1659 (2008).

    Article  Google Scholar 

  27. 27.

    J.M. Huang, M.F. Tsai, S.J. Yang, and W.M. Chiu: Preparation and thermal properties of multiwalled carbon nanotube/polybenzoxazine nanocomposites. J. Appl. Polym. Sci. 122, 1898–1904 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Y.H. Liu, B. Wang, and X.L. Jing: Thermal properties of hyperbranched polyborate functionalized multiwall carbon nanotube/polybenzoxazine composites. Polym. Compos. 32, 1352–1361 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Y.H. Wang, C.M. Chang, and Y.L. Liu: Benzoxazine-functionalized multi-walled carbon nanotubes for preparation of electrically-conductive polybenzoxazines. Polymer 53, 106–112 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    M. Chapartegui, J. Barcena, X. Irastorza, C. Elizetxea, E. Fiamegkou, V. Kostopoulos, and A. Santamaria: Manufacturing, characterization and thermal conductivity of epoxy and benzoxazine multi-walled carbon nanotube buckypaper composites. J. Compos. Mater. 47, 1705–1715 (2013).

    Article  Google Scholar 

  31. 31.

    F.O. Untem, E.C. Botelho, M.C. Rezende, and M.L. Costa: Benzoxazine resin/carbon nanotube nanostructured composite’s degradation kinetic. J. Nanosci. Nanotechnol. 13, 1–6 (2013).

    Article  Google Scholar 

  32. 32.

    M.L. Costa, J.M.F. Paiva, E.C. Botelho, and M.C. Rezende: Thermal stability evaluation and glass transition temperature of differential aeronautical polymeric composites. Polym. Plast. Technol. Eng. 45, 1143 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    R.B. Prime: Thermosets in Thermal Characterization of Polymeric Materials; E.A. Turi ed.; Academic Press, New York, 1981.

  34. 34.

    A.C. Loos and G.S. Springer: Curing of grafite/epoxy composites. Washington NASA, AFWAL-TR-83–4040 (1983)

    Google Scholar 

  35. 35.

    N. Sbirrazzuoli and S. Vyazovkin: Learning about epoxy cure mechanism from isoconversional analysis of DSC data. Thermochim. Acta 388, 289–298 (2002).

    CAS  Article  Google Scholar 

  36. 36.

    T. Ozawa: A new method of analyzing TG data. Anal. Chem. 38, 1881 (1965).

    CAS  Google Scholar 

  37. 37.

    K. Kishore, V.R.P. Vermeker, and K. Mohan: Differential scanning calorimetric studies on ammonium perchlorate. Thermochim. Acta 13, 277 (1975).

    CAS  Article  Google Scholar 

  38. 38.

    American Society for Testing and Material. ASTM E 2070: Standard test method for kinetic parameters by differential scanning calorimetry using isothermal methods. US (2008).

    Google Scholar 

  39. 39.

    V.M.A. Calado and S.G. Advani: Thermoset resin cure kinetics and rheology. In Processing of Composites; R.S. Davé and A.C. Loos ed. (Hanser Publishers, Munich, Germany, 2000); pp. 32–107.

    Google Scholar 

  40. 40.

    American Society for Testing and Material. ASTM E 2041: Standard test method for estimating kinetic parameters by differential scanning calorimeter using the Borchardt and Daniels method. US (2008).

    Google Scholar 

  41. 41.

    Y. Wang and H. Ishida. Development of low-viscosity benzoxazine resins and their polymers. J. Appl. Polym. Sci. 86, 2953 (2002).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors thank CAPES, FAPESP, and CNPq (Process 151154/2009-0) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cirlene Fourquet Bandeira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bandeira, C.F., Pereira, A.C., Botelho, E.C. et al. Benzoxazine resin and their nanostructured composites cure kinetic by DSC. Journal of Materials Research 28, 3094–3099 (2013). https://doi.org/10.1557/jmr.2013.327

Download citation

Keywords

  • benzoxazine resin
  • carbon nanotubes
  • differential scanning calorimetry (DSC) kinetics