Effects of buffer layer thickness on the surface roughness of In0.3Ga0.7As thin films: A phase-field simulation


Interfacial reactions at 100 and 150 °C in the Sn–20.48 at.% In–3.05 at.% Ag (Sn–20.0 wt% In–2.8 wt% Ag)/Ni couples are studied. Three unusual phenomena are observed. First, liquation is found in Sn–20.48 at.% In–3.05 at.% Ag (Sn–In–Ag)/Ni couples that are reacted at 150 °C, which is lower than the melting points of both the solder and the Ni substrate. In addition to the Ni3Sn4 phase, liquid phase is formed in the reaction layer. Second, the liquid phase disappears and isothermal solidification occurs when there is prolonged isothermal heat treatment at 150 °C. The results are similar to those for transient liquid phase bonding. Third, the thickness of the reaction layer in Sn–In–Ag/Ni couples that are reacted for 1440 h at 150 °C is 40 times thicker than that of those reacted at 100 °C. The reaction mechanisms for these three unusual phenomena: liquation, isothermal solidification, and an extraordinary increase in the reaction rate for only 50 °C difference in temperature are elaborated and are related to each other.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.


  1. 1.

    R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, and N.H. Karam: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90, 183516 (2007).

    Article  CAS  Google Scholar 

  2. 2.

    W. Guter, J. Schöne, S.P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A.W. Bett, and F. Dimroth: Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94, 223504 (2009).

    Article  CAS  Google Scholar 

  3. 3.

    M. Wiemer, V. Sabnis, and H. Yuen: 43.5% efficient lattice matched solar cells. Proc. SPIE, Vol. 8108, 810804, High and Low Concentrator Systems for Solar Electric Applications VI (2011). doi: 10.1117/12.897769.

  4. 4.

    A. Luque: Will we exceed 50% efficiency in photovoltaics? J. Appl. Phys. 110, 031301 (2011).

    Article  CAS  Google Scholar 

  5. 5.

    D.J. Dunstan: Relaxed buffer layers. Semicond. Sci. Technol. 6, A76 (1991).

    CAS  Article  Google Scholar 

  6. 6.

    J.C. Zhang, D.G. Zhao, J.F. Wang, Y.T. Wang, J. Chen, J.P. Liu, and H. Yang: The influence of AlN buffer layer thickness on the properties of GaN epilayer. J. Cryst. Growth 268, 24 (2004).

    CAS  Article  Google Scholar 

  7. 7.

    X.L. Wang, D.G. Zhao, X.Y. Li, H.M. Gong, H. Yang, and J.W. Liang: The effects of LT AlN buffer thickness on the properties of high Al composition AlGaN epilayers. Mater. Lett. 60, 3693 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    W.J. Luo, X.L. Wang, L.C. Guo, H.L. Xiao, C.M. Wang, J.X. Ran, J.P. Li, and J.M. Li: Influence of AlN buffer layer thickness on the properties of GaN epilayer on Si(1 1 1) by MOCVD. Microelectron. J. 39 1710 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    S. Nakamura: GaN growth using GaN buffer layer. J. Appl. Phys. 30, L1705 (1991).

    Article  Google Scholar 

  10. 10.

    L. Gonzalez, J.M. García, R. García, F. Briones, J. Martínez-Pastor, and C. Ballesteros: Influence of buffer-layer surface morphology on the self-organized growth of InAs on InP(001) nanostructures. Appl. Phys. Lett. 76, 1104 (2000).

    CAS  Article  Google Scholar 

  11. 11.

    E.C. Piquette, P.M. Bridger, R.A. Beach, and T.C. McGill: Effect of buffer layer and III/V ratio on the surface morphology of Gan grown by MBE. In MRS Proceedings, Vol. 537, 1998; p. G3.77. doi:10.1557/PROC-537–G3.77.

    Article  Google Scholar 

  12. 12.

    R.J. Asaro and W.A. Tiller: Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion. Metall. Trans. 3, 1789 (1972).

    CAS  Article  Google Scholar 

  13. 13.

    M.A. Grinfeld: Instability of the separation boundry between a nonhydrostatically stressed elastic body and a melt. Sov. Phys. Dokl. 31, 831 (1986).

    Google Scholar 

  14. 14.

    D.J. Srolovitz: On the stability of surfaces of stressed solids. Acta Metall. 37, 621 (1989).

    Article  Google Scholar 

  15. 15.

    H. Gao: Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure. J. Mech. Phys. Solids 42, 741 (1994).

    Article  Google Scholar 

  16. 16.

    J. Tersoff and F.K. LeGoues: Competing relaxation mechanisms in strained layers. Phys. Rev. Lett. 72, 3570 (1994).

    CAS  Article  Google Scholar 

  17. 17.

    R. Krishnamurthy and D.J. Srolovitz: Film/substrate interface stability in thin films. J. Appl. Phys. 99, 043504 (2006).

    Article  CAS  Google Scholar 

  18. 18.

    G.H. Lu and F. Liu: Towards quantitative understanding of formation and stability of Ge hut islands on Si(001). Phys. Rev. Lett. 94, 176103 (2005).

    Article  CAS  Google Scholar 

  19. 19.

    F. Liu: Self-assembly of three-dimensional metal islands: Nonstrained versus strained islands. Phys. Rev. Lett. 89, 246105 (2002).

    Article  CAS  Google Scholar 

  20. 20.

    H. Wang, Y. Zhang, and F. Liu: Enhanced growth instability of strained film on wavy substrate. J. Appl. Phys. 104, 054301 (2008).

    Article  CAS  Google Scholar 

  21. 21.

    H. Hu, H.J. Gao, and F. Liu: Theory of directed nucleation of strained islands on patterned substrates. Phys. Rev. Lett. 101, 216102 (2008).

    Article  CAS  Google Scholar 

  22. 22.

    Y.U. Wang, Y.M. Jin, and A.G. Khachaturyan: Phase field microelasticity modeling of surface instability of heteroepitaxial thin films. Acta. Mater. 52, 81 (2004).

    CAS  Article  Google Scholar 

  23. 23.

    D.J. Seol, S.Y. Hu, Z.K. Liu, L.Q. Chen, S.G. Kim, and K.H. Oh: Phase-field modeling of stress-induced surface instabilities in heteroepitaxial thin films. J. Appl. Phys. 98, 044910 (2005).

    Article  CAS  Google Scholar 

  24. 24.

    Y. Ni, L.H. He, and A.K. Soh: Three-dimensional phase field simulation for surface roughening of heteroepitaxial films with elastic anisotropy. J. Cryst. Growth 284, 281 (2005).

    CAS  Article  Google Scholar 

  25. 25.

    T. Takaki, T. Hirouchi, and Y. Tomita: Phase-field study of interface energy effect on quantum dot morphology. J. Cryst. Growth 310, 2248 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    S.R. Kurtz, D. Myers, and J.M. Olson: Projected performance of three- and four-junction devices using GaAs and GaInP. In Photovoltaic Specialists Conference, 1997; Conference Record of the Twenty-Sixth IEEE, 1997; pp. 875–878. doi: 10.1109/PVSC.1997.654226.

    Google Scholar 

  27. 27.

    D.J. Friedman, J.F. Geisz, A.G. Norman, M.W. Wanlass, and S.R. Kurtz: 0.7-eV GaInAs junction for a GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) four-junction solar cell. 4th World Conference on Photovoltaic Energy Conversion, 2006; p. 598–602. doi: 10.1109/WCPEC.2006.279527.

    Google Scholar 

  28. 28.

    J.F. Geisz, S.R. Kurtz, M.W. Wanlass, J.S. Ward, A. Duda, D.J. Friedman, J.M. Olson, W.E. McMahon, T.E. Moriarty, J.T. Kiehl, M.J. Romero, A.G. Norman, and K.M. Jone: Inverted GaInP/(In)GaAs/InGaAs triple-junction solar cells with low-stress metamorphic bottom junctions. In Photovoltaic Specialists Conference San Diego, California May 11–16, 2008, 33rd IEEE; 2008; pp. 1–5. doi: 10.1109/PVSC.2008.4922452.

  29. 29.

    S.M. Sze: Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).

    Google Scholar 

  30. 30.

    M.R. Pillai, S-S. Kim, S.T. Ho, and S.A. Barnett: Growth of InxGa1−xAs/GaAs heterostructures using Bi as a surfactant. J. Vac. Sci. Technol., B 18, 1232 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    J.W. Matthews and A.E. Blakeslee: Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers. J. Cryst. Growth 32, 265 (1976).

    CAS  Article  Google Scholar 

  32. 32.

    J.M. Millunchick and S.A. Barnett: Suppression of strain relaxation and roughening of InGaAs on GaAs using ion-assisted molecular beam epitaxy. Appl. Phys. Lett. 65, 1136 (1994).

    Article  Google Scholar 

  33. 33.

    A.G. Khachaturyan: Theory of Structural Transformations in Solids (Wiley, New York, 1983).

    Google Scholar 

  34. 34.

    L.Q. Chen and J. Shen: Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147 (1998).

    CAS  Article  Google Scholar 

  35. 35.

    I.V. Kurilo and S.K. Guba: Misfit dislocations and stress in In1-xGaxAs/GaAs heterostructures. Inorg. Mater. 47, 819 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    T. Anan, K. Nishi, and S. Sugou: Critical layer thickness on (111)B‐oriented InGaAs/GaAs heteroepitaxy. Appl. Phys. Lett. 60, 3159 (1992).

    CAS  Article  Google Scholar 

  37. 37.

    S.L. Chuang: Physics of Optoelectronic Devices (Wiley, New York, 1995).

    Google Scholar 

  38. 38.

    S.O. Mariager, S.L. Lauridsen, A. Dohn, N. Bovet, C.B. Sørensen, C.M. Schleputz, P.R. Willmott, and R. Feidenhans'l: High-resolution three-dimensional reciprocal-space mapping of InAs nanowires. J. Appl. Cryst. 42 369, (2009).

    CAS  Article  Google Scholar 

  39. 39.

    M. Pelliccione and T.M. Lu: Evolution of Thin Film Morphology Modeling and Simulations (Springer, New York, 2007).

    Google Scholar 

  40. 40.

    J.W. Matthews and A.E. Blakeslee: Defects in epitaxial multilayers: I. Misfit dislocations. J. Cryst. Growth 27, 118 (1974).

    CAS  Google Scholar 

  41. 41.

    D.C. Bertolet, J-K. Hsu, F. Agahi, and K.M. Lau: Critical thickness of GaAs/InGaAs and AlGaAs/GaAsP strained quantum wells grown by organometallic chemical vapor deposition. J. Electron. Mater. 19, 967 (1990).

    CAS  Article  Google Scholar 

  42. 42.

    M. Krieger, H. Sigg, N. Herres, K. Bachem, and K. Kohler: Elastic constants and Poisson ratio in the system AlAs–GaAs. Appl. Phys. Lett. 66, 682 (1994).

    Article  Google Scholar 

  43. 43.

    W.E. Hoke, T.D. Kennedy, and A. Torabi: Simultaneous determination of Poisson ratio, bulk lattice constant, and composition of ternary compounds In0.3Ga0.7As, In0.3Al0.7As, In0.7Ga0.3P, and In0.7Al0.3P. Appl. Phys. Lett. 79, 4160 (2001).

    CAS  Article  Google Scholar 

  44. 44.

    P.J. Orders and B.F. Usher: Determination of critical layer thickness in InxGa1−xAs/GaAs heterostructures by x-ray diffraction. Appl. Phys. Lett. 50, 980 (1987).

    CAS  Article  Google Scholar 

  45. 45.

    A. Jasik, J. Sass, K. Mazur, and M. Wesolowski: Investigation of strained InGaAs layers on GaAs substrate. Opt. Appl. 37, 237 (2007).

    CAS  Google Scholar 

  46. 46.

    X. Zhang, O. Briot, B. Gil, and R. Aulombard: Critical layer thickness in MOCVD grown InGaAs/GaAs strained quantum wells. Mater. Sci. Eng., B 35, 184 (1995).

    Article  Google Scholar 

Download references


This work was supported by National Key Basic Research Project of China (Grant No. 973 Project), National Science Foundation of China (Contract Nos. 51002052 and 51372001), and Key Project in Science and Technology of Guangdong Province (Contract No. 2011A080801018). P. W. also would like to acknowledge funding from China Postdoctoral Science Foundation No. 2013M531840.

Author information



Corresponding author

Correspondence to Guoqiang Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, P., Gao, F. & Li, G. Effects of buffer layer thickness on the surface roughness of In0.3Ga0.7As thin films: A phase-field simulation. Journal of Materials Research 28, 3218–3225 (2013). https://doi.org/10.1557/jmr.2013.320

Download citation