Detailed investigation of contact deformation in ZrN/Zr multiplayer—understanding the role of volume fraction, bilayer spacing, and morphology of interfaces

Abstract

A systematic study was done to understand the influence of volume fractions and bilayer spacings for metal/nitride multilayer coating using finite element method (FEM). An axisymmetric model was chosen to model the real situation by incorporating metal and substrate plasticity. Combinations of volume fractions and bilayer spacings were chosen for FEM analysis consistent with experimental results. The model was able to predict trends in cracking with respect to layer spacing and volume fraction. Metal layer plasticity is seen to greatly influence the stress field inside nitride. It is seen that the thicker metal induces higher tensile stresses inside nitride and hence leads to lower cracking loads. Thin metal layers <10 nm were seen to have curved interfaces, and hence, the deformation mode was interfacial delamination in combination with edge cracking. There is an optimum seen with respect to volume fraction ∼13% and metal layer thickness ∼30 nm, which give maximum crack resistance.

This is a preview of subscription content, access via your institution.

TABLE I.
FIG. 1.
TABLE II.
FIG. 2.
TABLE III.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.

REFERENCES

  1. 1.

    J.H. Huang, C.H. Ma, and H. Chen: Effect of Ti interlayer on the residual stress and texture development of TiN thin films. Surf. Coat. Technol. 200, 5937 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    M. He and A. Evans: Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses. Int. J. Solids. Struct. 31, 3443 (1994).

    Article  Google Scholar 

  3. 3.

    H. Holleck and H. Schulz: Advanced layered material constitution. Thin Solid Films 153, 11 (1987).

    CAS  Article  Google Scholar 

  4. 4.

    H. Holleck and H. Schulz: Preparation and behaviour of wear-resistant TiC/TiB2, TiN/TiB2 and TiC/TiN coatings with high amounts of phase boundaries. Surf. Coat. Technol. 36, 707 (1988).

    CAS  Article  Google Scholar 

  5. 5.

    Y. Gachon, P. Ienny, A. Forner, G. Farger, M.C.S. Catherine, and A.B. Vannes: Erosion by solid particles of W/W-N multilayer coatings obtained by PVD process. Surf. Coat. Technol. 113, 140 (1999).

    CAS  Article  Google Scholar 

  6. 6.

    E. Quesnel, Y. Pauleau, P. Monge Cadet, and M. Brun: Tungsten and tungsten-carbon PVD multilayered structures as erosion-resistant coatings. Surf. Coat. Technol. 62, 479 (1993).

    Article  Google Scholar 

  7. 7.

    B. Chen, W. Pan, J. Hwang, G. Yu, and J. Huang: On the corrosion behavior of TiN coated AISI D2 steel. Surf. Coat. Technol. 111, 16 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    R. Hubler, A. Schroer, W. Ensinger, G. Wolf, F.C. Stedile, W.H. Schreiner, and I.J.R. Baumvol: Corrosion behavior of steel coated with thin film of TiN/Ti composites. J. Vac. Sci. Technol., A 11, 451 (1993).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Cheng, T. Browne, B. Heckerman, C. Bowman, and E.V. Gorokhovsky: Mechanical and tribological properties of TiN/Ti multilayer coating. Surf. Coat. Technol. 205, 146 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    F.F. Xia, M.H. Wu, F. Wang, Z.Y. Jia, and A.L. Wang: Nanocomposite Ni–TiN coatings prepared by ultrasonic electrodeposition. Curr. Appl. Phys. 9, 44 (2009).

    Article  Google Scholar 

  11. 11.

    Z. H. Xie, M. Hoffman, P. Munroe, A. Bendavid, and P. Martin: Deformation mechanisms of (TiN) multilayer coatings alternated by ductile or stiff interlayer’s. Acta Mater. 56, 852 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    Z.H. Xie, M. Hoffman, P. Munroe, R. Singh, A. Bendavid, and P.J. Martin: Microstructural response of TiN monolithic and multilayer coatings during microscratch testing. J. Mater. Res. 22(8), 2312 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    K. Ma, A. Bloyce, and T. Bell: Examination of mechanical properties and failure mechanisms of TiN and Ti-TiN multilayer coatings. Surf. Coat. Technol. 76–77, 297 (1995).

    Article  Google Scholar 

  14. 14.

    N. Chawla, D.R.P. Singh, Y. Shen, G. Tang, and K.K. Chawla: Indentation mechanics and fracture behavior of metal/ceramic nanolaminate composites. J. Mater. Sci. 48, 4383 (2008).

    Article  Google Scholar 

  15. 15.

    D. Bhattacharyya, N.A. Mara, P. Dickerson, R.G. Hoagland, and A. Misra: A transmission electron microscopy study of the deformation behavior underneath nanoindents in nanoscale Al-TiN multilayered composites. Philos. Mag. 90, 1711 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    P. Dayal, M.Z. Quadir, C. Kong, N. Savvides, and M. Hoffman: Transition from dislocation controlled plasticity to grain boundary mediated shear in nanolayered aluminum/palladium thin films. Thin Solid Films 519, 3213 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    R.M. Souza, A. Sinatora, G.G.W. Mustoe, and J.J. Moore: Numerical and experimental study of the circular cracks observed at the contact edges of the indentations of coated systems with soft substrates. Wear 251, 1337 (2001).

    Article  Google Scholar 

  18. 18.

    D.J. Ward and R.D. Arnell: Finite element modelling of stress development during deposition of ion assisted coatings. Thin Solid Films 420–421, 269 (2002).

    Article  Google Scholar 

  19. 19.

    H. Djabella and R.D. Arnell: Finite element analysis of the contact stresses in elastic coating/substrate under normal and tangential load. Thin Solid Films 223, 87 (1993).

    Article  Google Scholar 

  20. 20.

    T. Gorishnyy, L.G. Olson, M. Oden, S.M. Aouadi, and S. Rohde: Optimization of wear-resistant coating architectures using finite element analysis. J. Vac. Sci. Technol., A 21, 332 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    G. Tang, Y.L. Shen, D.R.P. Singh, and N. Chawla: Analysis of indentation- derived effective elastic modulus of metal-ceramic multilayer’s. Int. J. Mech. Mater. Des. 4, 391 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    X. Zhao, Z. Xie, and P. Munroe: Nanoindentation of hard multilayer coatings: Finite element modeling. Mater. Sci. Eng., A 528, 1111 (2011).

    Article  Google Scholar 

  23. 23.

    A. Sakharova, J.V. Fernandes, M.C. Oliveira, and J.M. Antunes: Influence of ductile interlayers on mechanical behaviour of hard coatings under depth-sensing indentation: A numerical study on TiAlN. J. Mater. Sci. 45, 3812 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    G. Tang, D.R.P. Singh, Y.L. Shen, and N. Chawla: Elastic properties of metal/ceramic nanolaminates measured by nanoindentation. Mater. Sci. Eng., A 502, 79 (2009).

    Article  Google Scholar 

  25. 25.

    S. Math, V. Jayaram, and S.K. Biswas: Deformation and failure of a film/substrate system subjected to spherical indentation: Part I. Experimental validation of stresses and strains derived using Hankel transform technique in an elastic film/substrate system. J. Mater. Res. 21, 774 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    N. Verma and V. Jayaram: The influence of Zr layer thickness on contact deformation and fracture in a ZrN-Zr multilayer coating. J. Mater. Sci. 47, 1621 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    M.T. Tilbrook, D.J. Paton, Z. Xie, and M. Hoffman: Microstructural effects on indentation failure mechanisms in TiN coatings: Finite element simulations. Acta Mater. 55, 2489 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    B.T. Wang, P. Zhang, H.Y. Liu, W.D. Li, and P. Zhang: First-principals calculations of phase transition, elastic modulus, and superconductivity under pressure for zirconium. J. Appl. Phys. 109, 063514 (2011).

    Article  Google Scholar 

  29. 29.

    M.A. Auger, J.J. Araiza, C. Falcony, O. Sanchez, and J.M. Albella: Hardness and tribology measurements on ZrN coatings deposited by reactive sputtering technique. Vacuum 81, 1462 (2007).

    CAS  Article  Google Scholar 

  30. 30.

    A. Singh, P. Kuppusami, R. Thirumurugesan, R. Ramaseshan, M. Kamruddin, S. Dash, V. Ganesan, and E. Mohandas: Study of microstructure and nanomechanical properties of Zr films prepared by pulsed magnetron sputtering. Appl. Surf. Sci. 257, 9909 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    M. Meyers, A. Mishra, and D. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    L. Giannuzzi and F. Stevie: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197 (1999).

    Article  Google Scholar 

  33. 33.

    F. Stevie: Applications of focused ion beams in microelectronics production, de- sign and development. Surf. Interface Anal. 23, 61 (1995).

    CAS  Article  Google Scholar 

  34. 34.

    S.J. Suresh, S. Math, V. Jayaram, and S.K. Biswas: Toughening through multilayering in TiN-AlTiN films. Philos. Mag. 87, 2521 (2007).

    Article  Google Scholar 

  35. 35.

    S. Bhowmick, A.N. Kale, V. Jayaram, and S.K. Biswas: Contact damage in TiN coatings on steel. Thin Solid Films 436, 250 (2003).

    CAS  Article  Google Scholar 

  36. 36.

    E. Hoek and Z.T. Bienawsky: Brittle fracture propagation in rocks under compression. Int. J. Fracture Mech. 1, 137 (1965).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nisha Verma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Verma, N., Jayaram, V. Detailed investigation of contact deformation in ZrN/Zr multiplayer—understanding the role of volume fraction, bilayer spacing, and morphology of interfaces. Journal of Materials Research 28, 3146–3156 (2013). https://doi.org/10.1557/jmr.2013.319

Download citation