Characterization of the interfacial strength of SiNx/GaAs film/substrate systems using energy balance in nanoindentation

Abstract

The linear elastic recovery measured from the nanoindentation unloading curve of a film/substrate system was used to determine the practical work for delamination using the proposed energy balance method and to estimate the delaminated area using the Hertz contact loaded model. The practical work for delamination was then calculated by dividing the external mechanical work required for generating interfacial crack by the delaminated area. The finite element model simulation demonstrated that the energy method was feasible and the estimation of delamination area using the Hertz model was accurate. The practical works for delamination in the plasma-enhanced chemical vapor deposition SiNx/GaAs film/substrate systems estimated using this method were in the range of 1–2.3 J/m2, which were in reasonably good agreement with those obtained from our another experimental approach.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
TABLE I.
FIG. 10.

REFERENCES

  1. 1.

    H. Huang, K.J. Winchester, A. Suvorova, B.R. Lawn, Y. Liu, X.Z. Hu, J.M. Dell, and L. Faraone: Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Mater. Sci. Eng., A 435, 453 (2006).

    Article  Google Scholar 

  2. 2.

    M.D. Kriese, W.W. Gerberich, and N.R. Moody: Quantitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W. J. Mater. Res. 14, 3019 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    J. Malzbender and G.D. With: Energy dissipation, fracture toughness and the indentation load–displacement curve of coated materials. Surf. Coat. Technol. 135, 60 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    S. Venkataraman, D. Kohlstedt, and W. Gerberich: Continuous microscratch measurements of the practical and true works of adhesion for metal/ceramic systems. J. Mater. Res. 11(12), 3133 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    A. Volinsky, N. Moody, and W. Gerberich: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50(3), 441 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    S. Zhang, Y.S. Wang, X.T. Zeng, K.A. Khor, W. Weng, and D.E. Sun: Evaluation of adhesion strength and toughness of fluoridated hydroxyapatite coatings. Thin Solid Films 516, 5162 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    R. Jacobsson: Measurement of the adhesion of thin films. Thin Solid Films 34(2), 191 (1976).

    CAS  Article  Google Scholar 

  8. 8.

    D. Hegemann, H. Brunner, and C. Oehr: Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instrum. Methods Phys. Res., Sect. B 208, 281 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    J. Kim, K.S. Kim, and Y.H. Kim: Mechanical effects in peel adhesion test. J. Adhes. Sci. Technol. 3(1), 175 (1989).

    CAS  Article  Google Scholar 

  10. 10.

    R.H. Dauskardt, M. Lane, Q. Ma, and N. Krishna: Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61(1), 141 (1998).

    Article  Google Scholar 

  11. 11.

    C. Litteken, R. Dauskardt, T. Scherban, G. Xu, J. Leu, D. Gracias, and B. Sun: Interfacial adhesion of thin-film patterned interconnect structures. In Interconnect Technology Conference, 2003. Proceedings of the IEEE 2003 International (IEEE, New York, 2003); p. 168.

    Google Scholar 

  12. 12.

    D.B. Marshall and A.G. Evans: Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination. J. Appl. Phys. 56(10), 2632 (1984).

    CAS  Article  Google Scholar 

  13. 13.

    A. Evans and J. Hutchinson: On the mechanics of delamination and spalling in compressed films. Int. J. Solid. Struct. 20(5), 455 (1984).

    Article  Google Scholar 

  14. 14.

    S. Hara, T. Kumagai, S. Izumi, and S. Sakai: Multiscale analysis on the onset of nanoindentation-induced delamination: Effect of high-modulus Ru overlayer. Acta Mater. 57(14), 4209 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    B. Huang, M.H. Zhao, and T.Y. Zhang: Indentation fracture and indentation delamination in ZnO film/Si substrate systems. Philos. Mag. 84(12), 1233 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    X. Li: Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Mater. 45(11), 4453 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    J. Chen and S.J. Bull: Approaches to investigate delamination and interfacial toughness in coated systems: An overview. J. Phys. D: Appl. Phys. 44(304001), 1 (2011).

    CAS  Google Scholar 

  18. 18.

    A. Abdul-Baqi and E.V.D. Giessen: Delamination of a strong film from a ductile substrate during indentation unloading. J. Mater. Res. 16, 1396 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    L. Chen, K.B. Yeap, C.M. She, and G.R. Liu: A computational and experimental investigation of three-dimensional micro-wedge indentation-induced interfacial delamination in a soft-film-on-hard-substrate system. Eng. Struct. 33 (12), 3269 (2011).

    Article  Google Scholar 

  20. 20.

    X. Zhang and S. Zhang: Rethinking the role that the “step” in the load–displacement curves can play in measurement of fracture toughness for hard coatings. Thin Solid Films 520(9), 3423 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    W. Li and T. Siegmund: An analysis of the indentation test to determine the interface toughness in a weakly bonded thin film coating–substrate system. Acta Mater. 52(10), 2989–2999 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    J. Chen and S.J. Bull: Indentation fracture and toughness assessment for thin optical coatings on glass. J. Phys. D: Appl. Phys. 40(18), 5401 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    S.V. Hainsworth, M.R. McGurk, and T.F. Page: The effect of coating cracking on the indentation response of thin hard-coated systems. Surf. Coat. Technol. 102, 97 (1998).

    CAS  Article  Google Scholar 

  24. 24.

    M. Lu, H. Xie, H. Huang, J. Zou, and Y. He: Indentation-induced delamination of plasma-enhanced chemical vapor deposition silicon nitride film on gallium arsenide substrate. J. Mater. Res. 28(8), 1047 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    J.D. Toondera: Fracture toughness and adhesion energy of sol-gel coatings. J. Mater. Res. 17(1), 224 (2002).

    Article  Google Scholar 

  26. 26.

    M. Lane: Interface fracture. Annu. Rev. Mater. Res. 33(1), 29 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    C. Shet and N. Chandra: Analysis of energy balance when using cohesive zone models to simulate fracture processes. J. Eng. Mater. Technol. 124(4), 440 (2002).

    Article  Google Scholar 

  28. 28.

    B.R. Lawn: Fracture of Brittle Solids (Cambridge University Press, Cambridge, UK, 1993).

    Google Scholar 

  29. 29.

    P.J. Wei, W.L. Liang, C.F. Ai, and J.F. Lin: A new method for determining the strain energy release rate of an interface via force–depth data of nanoindentation tests. Nanotechnology 20(2), 025701 (2009).

    Article  Google Scholar 

  30. 30.

    O.N. Scott, M.R. Begley, U. Komaragiri, and T.J. Mackin: Indentation of freestanding circular elastomer films using spherical indenters. Acta Mater. 52(16), 4877 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    J. Hu, Y.K. Chou, and R.G. Thompson: Cohesive zone effects on coating failure evaluations of diamond-coated tools. Surf. Coat. Technol. 203(5–7), 730 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    Z.H. Jin and C.T. Sun: Cohesive zone modeling of interface fracture in elastic bi-materials. Eng. Fract. Mech. 72(12), 1805 (2005).

    Article  Google Scholar 

  33. 33.

    Z. Ouyang and G. Li: Cohesive zone model based analytical solutions for adhesively bonded pipe joints under torsional loading. Int. J. Solid. Struct. 46(5), 1205 (2009).

    Article  Google Scholar 

  34. 34.

    A. Needleman: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525 (1987).

    Article  Google Scholar 

  35. 35.

    ANSYS Academic Research Release 13.0, Help System, 4.13. Cohesive Zone Material Model (ANSYS, Inc., 2007).

  36. 36.

    M. Lu and H. Huang: Determination of the energy release rate in the interfacial delamination of SiN/GaAs bi-layers via nanoindentation. J. Mater. Res. Submitted.

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support of WIN Semiconductors Co. and Australian Research Council (ARC). They are grateful to Mingyuan Lu and Shiliang Wang for their valuable comments and Anshun He and Chengwei Kang for experimental assistance. HH is financially supported by ARC under the Future Fellow Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Han Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xie, H., Huang, H. Characterization of the interfacial strength of SiNx/GaAs film/substrate systems using energy balance in nanoindentation. Journal of Materials Research 28, 3137–3145 (2013). https://doi.org/10.1557/jmr.2013.317

Download citation

Keywords

  • thin film
  • nanoindentation
  • energy balance
  • interfacial strength
  • delamination