On the measurement of energy dissipation using nanoindentation and the continuous stiffness measurement technique

Abstract

New experimental methods have been developed to optimize the accuracy and precision of the measured phase angle in nanoindentation experiments on viscoelastic materials performed with a Berkovich indenter. Measurements conducted in fused silica and sapphire form the basis of a new instrument calibration. Experimental verification of the new calibration and an enhanced test method is demonstrated in polycarbonate (PC) and polymethyl methacrylate (PMMA). In comparison to the standard continuous stiffness measurement (CSM) technique, the new calibration and test method reduces the measurement error in the phase angle of PC from 1900% to 10% and from 135% to 10% in PMMA. Scatter in phase angle measured by the new test method is nearly 10 times less than the level observed using the standard CSM technique. The effect of time dependent deformation on the measured phase angle is also documented. The experimental observations and results are applicable to a variety of dynamic nanoindentation test methods.

This is a preview of subscription content, access via your institution.

TABLE I.
FIG. 1.
FIG. 2.
TABLE II.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

References

  1. 1.

    W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3 (2004).

    CAS  Article  Google Scholar 

  2. 2.

    C.C. White, M.R. Vanlandingham, P.L. Drzal, N-K. Chang, and S-H. Chang: Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic testing. J. Polym. Sci., Part B: Polym. Phys. 43(14), 1812 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    S. Pathak, J.G. Swadener, S.R. Kalidindi, H.W. Courtland, K.J. Jepsen, and H.M. Goldman: Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation. J. Mech. Behav. Biomed. Mater. 4(1), 34 (2011).

    Article  Google Scholar 

  4. 4.

    G. Huang, N.P. Daphalapurkar, R.Z. Gan, and H. Lu: A method for measuring linearly viscoelastic properties of human tympanic membrane using nanoindentation. J. Biomech. Eng. 130(1), 014501 (2008).

    Article  Google Scholar 

  5. 5.

    A.K. Bembey, M.L. Oyen, A.J. Bushby, and A. Boyde: Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos. Mag. 86(33–35), 5691 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    N. Rodriguez, M.L. Oyen, and S.J. Shefelbine: Insight into differences in nanoindentation properties of bone. J. Mech. Behav. Biomed. Mater. 18, 90–99 (2013).

    Article  Google Scholar 

  7. 7.

    D.G. Kim, D. Gyoon, S.S. Huja, A. Navalgund, A. D’Atri, B.C. Tee, S. Reeder, and H.R. Lee: Effect of estrogen deficiency on regional variation of a viscoelastic tissue property of bone. J. Biomech. 46(1), 110–115 (2013).

    Article  Google Scholar 

  8. 8.

    D.G. Kim, S.S. Huja, R.L. Hye, B.C. Tee, and S. Hueni: Relationships of viscosity with contact hardness and modulus of bone matrix measured by nanoindentation. J. Biomech. Eng. 132, 2 (2010).

    Google Scholar 

  9. 9.

    H. Isaksson, M. Malkiewicz, R. Nowak, H.J. Helminen, and J.S. Jurvelin: Rabbit cortical bone tissue increases its elastic stiffness but becomes less viscoelastic with age. Bone 47(6), 1030 (2010).

    Article  Google Scholar 

  10. 10.

    H. Isaksson, S. Nagao, M. MaŁkiewicz, P. Julkunen, R. Nowak, and J.S. Jurvelin: Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone. J. Biomech. 43(12), 2410 (2010).

    Article  Google Scholar 

  11. 11.

    M. Sakai: Time-dependent viscoelastic relation between load and penetration for an axisymmetric indenter. Philos. Mag. A 82(10), 1841 (2002).

    CAS  Article  Google Scholar 

  12. 12.

    L. Cheng, X. Xia, W. Yu, L.E. Scriven, and W.W. Gerberich: Flat-punch indentation of viscoelastic material. J. Polym. Sci., Part B: Polym. Phys. 38(1), 10 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    E.G. Herbert, W.C. Oliver, A. Lumsdaine, and G.M. Pharr: Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat punch nanoindentation. J. Mater. Res. 24(3), 626 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    J. Capodagli and Roderic Lakes: Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: a test of time–temperature superposition. Rheol. Acta 47(7), 777 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    C.B. Crowet: Long term physical ageing of polycarbonate at room temperature: dynamic mechanical measurements. J. Mater. Sci. 34(8), 1701 (1999).

    Article  Google Scholar 

  16. 16.

    L. Guerdoux, R.A. Duckett, and D. Froelich: Physical ageing of polycarbonate and PMMA by dynamic mechanical measurements. Polymer 25(10), 1392 (1984).

    CAS  Article  Google Scholar 

  17. 17.

    H.J. Kolman, K. Ard, and C.L. Beatty: Variation of dynamic mechanical properties of polycarbonate as a result of deformation. Polym. Eng. Sci. 22(15), 920 (1982).

    Article  Google Scholar 

  18. 18.

    E.G. Herbert, W.C. Oliver, and G.M. Pharr: Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D: Appl. Phys. 41(7), 074021 (2008).

    Article  Google Scholar 

  19. 19.

    G.M. Pharr, J.H. Strader, and W.C. Oliver: Critical issues in making small-depth mechanical property measurements by nanoindentation with continuous stiffness measurement. J. Mater. Res. 24(3), 653 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    R.S. Lakes: Viscoelastic Solids (CRC Press, Boca Raton, FL, 1999), pp. 156–162.

    Google Scholar 

Download references

Acknowledgment

Financial support for this work was provided by the National Science Foundation under NSF Grant No. 1069165.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erik G. Herbert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herbert, E.G., Johanns, K.E., Singleton, R.S. et al. On the measurement of energy dissipation using nanoindentation and the continuous stiffness measurement technique. Journal of Materials Research 28, 3029–3042 (2013). https://doi.org/10.1557/jmr.2013.305

Download citation