Abstract
New strategies for materials fabrication are of fundamental importance in the advancement of science and technology. Nanocrystals, especially with an anisotropic shape such as cubic, are candidates for building blocks for new bottom-up approaches to materials assembly, yielding a functional architecture. Such materials also receive attention because of their intrinsic size-dependent properties and resulting applications. Here, we report synthesis and characteristics of BaTiO3 and SrTiO3 nanocubes and the ordered assemblies as ferroelectric supracrystals. BaTiO3 and SrTiO3 nanocubes with narrow size distributions were obtained in an aqueous process. BaTiO3 films made up of ordered nanocube assemblies were fabricated on various substrates by evaporation-induced self-assembly method. Regardless of the substrate, the nanocubes exhibited {100} orientations and a high degree of face-to-face ordering, which remained even after heat treatment at 850 °C. Piezoresponse force microscopy was carried out on the supracrsytal films to obtain plots of the d33 piezoelectric coefficient against the poling field, and ferroelectric hysteresis curves were shown.
This is a preview of subscription content, access via your institution.













References
- 1.
S. O’Brien, L. Brus, and C.B. Murray: Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085 (2001).
- 2.
M. Niederberger, N. Pinna, J. Polleux, and M. Antonietti: A general soft-chemistry route to perovskite and related materials: Synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles. Angew. Chem. Int. Ed. 42, 2270 (2004).
- 3.
M. Niederberger, G. Garnweitner, N. Pinna, and M. Antonietti: Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba, Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation. J. Am. Chem. Soc. 126, 9120 (2004).
- 4.
X. Wang, J. Zhuang, Q. Peng, and Y. Li: A general strategy for nanocrystal synthesis. Nature 437, 121 (2005).
- 5.
R.L. Brutchey and D.E. Morse: Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. Angew. Chem. Int. Ed. 45, 6564 (2006).
- 6.
H. Liu, C. Hu, and Z.L. Wang: Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides. Nano Lett. 6, 1535 (2006).
- 7.
V. Bansal, P. Poddar, A. Ahmad, and M. Sastry: Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128, 11958 (2006).
- 8.
L. Huang, Z. Chen, J.D. Wilson, S. Banerjee, R.D. Robinson, I.O. Herman, R. Laibowitz, and S. O’Brien: Barium titanate nanocrystals and nanocrystal thin film: Synthesis, ferroelectricity and dielectric properties. J. Appl. Phys. 100, 034316 (2006).
- 9.
B. Hou, Y. Xu, D. Wu, and Y. Sun: Preparation and characterization of single-crystalline barium strontium titanate nanocubes via solvothermal method. Powder Technol. 170, 26 (2006).
- 10.
K. Su, N. Nuraje, and N.L. Yang: Open-bench method for the preparation of BaTiO3, SrTiO3, and BaxSr1-xTiO3nanocrystals at 80 °C. Langmuir 23, 11269 (2007).
- 11.
N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa, and A. Gupta: Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures. J. Phys. Chem. C 112, 8634 (2008).
- 12.
F. Nakasone, K. Kobayashi, T. Suzuki, Y. Mizuno, H. Chazono, and H. Imai: Nanoparticle-sintered BaTiO3 thin films and its orientation control by solid phase epitaxy. Jpn. J. Appl. Phys. 47, 8518 (2008).
- 13.
S. Adireddy, C. Lin, B. Cao, W. Zhou, and G. Caruntu: Solution-based growth of monodisperse cube-like BaTiO3 colloidal nanocrystals. Chem. Mater. 22, 1946 (2010).
- 14.
J. Varghese, R.W. Whatmore, and J.D. Holmes: Ferroelectric nanoparticles, wires, tubes: Synthesis, characterization and applications. J. Mater. Chem. 23, 2618–2638 (2013).
- 15.
E.K. Akdogan and A. Safari: Phenomenological theory of size effects on the cubic-tetragonal phase transition in BaTiO3 nanocrystals. Jpn. J. Appl. Phys. 41, 7170 (2002).
- 16.
T. Hoshina, T. Furuta, Y. Kigoshi, S. Hata, N. Horiuchi, H. Takeda, and T. Tsurumi: Size effect of nanograined BaTiO3 ceramics fabricated by aerosol deposition method. Jpn. J. Appl. Phys. 49, 09C02 (2010).
- 17.
M.J. Polking, M.G. Han, A. Yourdkhani, V. Petkov, C.F. Kisielowski, V.V. Volkov, Y. Zhu, G. Caruntu, A.P. Alivisatos, and R. Ramesh: Ferroelectric order in individual nanometer scale crystals. Nat. Mater. 11, 700 (2012).
- 18.
T. Suzuki, K. Morito, and Y. Iwazaki: The latest advances in high-dielectric thin-film capacitor techonology for GHz-RF devices. Integr. Ferroelectr. 76, 47 (2005).
- 19.
N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, and S. Streiffer: Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).
- 20.
Y. Guo, K. Suzuki, K. Nishizawa, T. Miki, and K. Kato: Electrical properties of (100)-predominant BaTiO3 films derived from alkoxide solutions of two concentrations. Acta Mater. 54, 3893 (2006).
- 21.
D.V. Talapin: Nanocrystal solids: A modular approach to materials design. MRS Bull. 37, 63 (2012).
- 22.
H. Colfen and S. Mann: Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostrustures. Angew. Chem. Int. Ed. 42, 2350 (2003).
- 23.
H. Colfen and M. Antonietti: Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 5576 (2005).
- 24.
F. Dang, K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara: In situ growth BaTiO3 nanocubes and their superlattice from an aqueous process. Nanoscale 4, 1344 (2012).
- 25.
F. Dang, K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara: Growth of monodispersed SrTiO3 nanocubes by thermohydrolysis method. Cryst. Eng. Commun. 13, 3878 (2011).
- 26.
K. Mimura, F. Dang, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara: Fabrication of dielectric nanocubes in ordered structure by capillary force assisted self-assembly method and their piezoresponse properties. J. Nanosci. Nanotechnol. 12, 3853 (2012).
- 27.
K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara: Piezoresponse properties of orderly assemblies of BaTiO3 and SrTiO3 nanocube single crystals. Appl. Phys. Lett. 101, 012901 (2012).
- 28.
K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara: Fabrication and characterization of dielectric nanocube self-assembled structures. Jpn. J. Appl. Phys. 51, 09LC03 (2012).
- 29.
K. Mimura and K. Kato: Characteristics of barium titanate nanocubes ordered assembly thin films fabricated by dip-coating method. Jpn. J. Appl. Phys. 52, 09KC06 (2013).
- 30.
K. Mimura and K. Kato: Fabrication and piezoresponse properties of {100} BaTiO3 films containing highly-ordered nanocube assemblies on various substrates. J. Nanopart. Res. 30, 15 (2013).
- 31.
Y. Lu and J.D. Miller: Carboxyl stretching vibrations of spontaneously adsorbed and LB-transferred calcium carboxylates as determined by FTIR internal reflection spectroscopy. J. Colloid Interface Sci. 256, 41 (2002).
- 32.
Y.G. Aronoff, B. Chen, G. Lu, C. Seto, J. Schwartz, and S.L. Bernasek: Stabilization of self-assembled monolayers of carboxylic acids on native oxides of metals. J. Am. Chem. Soc. 119, 259 (1997).
- 33.
A. Testino, M.T. Buscaglia, V. Buscaglia, M. Viviani, C. Bottino, and P. Nanni: Kinetics and mechanism of aqueous chemical synthesis of BaTiO3 particles. Chem. Mater. 16, 1536 (2004).
- 34.
K. Tomita, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura, and M. Kakihana: A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew. Chem. Int. Ed. 45, 2378 (2006).
- 35.
H. Mockel, M. Giersig, and F. Willig: Formation of uniform size anatase nanocrystals from bis(ammonium lactato)titanium dihydroxide by thermohydrolysis. J. Mater. Chem. 9, 3051 (1999).
- 36.
A.S. Dimitrov and K. Nagayama: Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12, 1303 (1996).
- 37.
S. Watanabe, K. Inukai, S. Mizuta, and M.T. Miyahara: Mechanism for stripe pattern formation on hydrophilic surfaces by using convective self-assembly. Langmuir 25, 7287 (2009).
- 38.
H.P. Sun, W. Tian, X.Q. Pan, J.H. Haeni, and D.G. Schlom: Evolution of dislocation arrays in epitaxial BaTiO3 thin films grown on (100) SrTiO3. Appl. Phys. Lett. 84, 3298 (2004).
- 39.
R.W. Schwartz, P.G. Clem, J.A. Voigt, E.R. Byhoff, M.V. Stry, T.J. Headley, and N.A. Missert: Control of microstructure and orientation in solution-deposited BaTiO3 and SrTiO3 thin films. J. Am. Ceram. Soc. 82, 2359 (1999).
- 40.
S. Hoffmann and R. Waser: Control of the morphology of CSD-prepared (Ba, Sr)TiO3 thin films. J. Eur. Ceram. Soc. 19, 1339 (1999).
- 41.
T. Harigai, S.M. Nam, H. Kakemoto, S. Wada, K. Saito, and T. Tsurumi: Structural and dielectric properties of perovskite-type artificial superlattices. Thin Solid Films 509, 13 (2006).
- 42.
S. Disch, E. Wetterskog, R.P. Hermann, G.S. Alvarez, P. Busch, T. Bruckel, L. Bergstrom, and S. Kamali: Shape induced symmetry in self-assembled mesocrystals of iron oxide nanocubes. Nano Lett. 11, 1651 (2011).
- 43.
A. Demortiere, P. Launois, N. Goubet, P.A. Albouy, and C. Petit: Shape-controlled platinum nanocubes and their assembly into two-dimensional and three-dimensional superlattices. J. Phys. Chem. B 112, 14583 (2008).
- 44.
H. Chan, A. Demortiere, L. Vukovic, P. Kral, and C. Petit: Colloidal nanocube supercrystals stabilized by multipolar coulombic coupling. ASC Nano 6, 4203 (2012).
- 45.
S. Hong, J. Woo, H. Shin, J.U. Jeon, Y.E. Pak, E.L. Colla, N. Setter, E. Kim, and K. No: Principle of ferroelectric domain imaging using atomic force microscope. J. Appl. Phys. 89, 1377 (2001).
Acknowledgments
This work was supported by the Collaborative Research Consortium of Nanocrystal Ceramics and the Advanced Low Carbon Technology Research and Development Program (ALCA) of Japan Science and Technology Agency (JST).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kato, K., Mimura, Ki., Dang, F. et al. BaTiO3 nanocube and assembly to ferroelectric supracrystals. Journal of Materials Research 28, 2932–2945 (2013). https://doi.org/10.1557/jmr.2013.299
Received:
Accepted:
Published:
Issue Date: