BaTiO3 nanocube and assembly to ferroelectric supracrystals


New strategies for materials fabrication are of fundamental importance in the advancement of science and technology. Nanocrystals, especially with an anisotropic shape such as cubic, are candidates for building blocks for new bottom-up approaches to materials assembly, yielding a functional architecture. Such materials also receive attention because of their intrinsic size-dependent properties and resulting applications. Here, we report synthesis and characteristics of BaTiO3 and SrTiO3 nanocubes and the ordered assemblies as ferroelectric supracrystals. BaTiO3 and SrTiO3 nanocubes with narrow size distributions were obtained in an aqueous process. BaTiO3 films made up of ordered nanocube assemblies were fabricated on various substrates by evaporation-induced self-assembly method. Regardless of the substrate, the nanocubes exhibited {100} orientations and a high degree of face-to-face ordering, which remained even after heat treatment at 850 °C. Piezoresponse force microscopy was carried out on the supracrsytal films to obtain plots of the d33 piezoelectric coefficient against the poling field, and ferroelectric hysteresis curves were shown.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.


  1. 1.

    S. O’Brien, L. Brus, and C.B. Murray: Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085 (2001).

    Article  CAS  Google Scholar 

  2. 2.

    M. Niederberger, N. Pinna, J. Polleux, and M. Antonietti: A general soft-chemistry route to perovskite and related materials: Synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles. Angew. Chem. Int. Ed. 42, 2270 (2004).

    Article  CAS  Google Scholar 

  3. 3.

    M. Niederberger, G. Garnweitner, N. Pinna, and M. Antonietti: Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba, Sr)TiO3 nanoparticles via a mechanism involving C-C bond formation. J. Am. Chem. Soc. 126, 9120 (2004).

    CAS  Article  Google Scholar 

  4. 4.

    X. Wang, J. Zhuang, Q. Peng, and Y. Li: A general strategy for nanocrystal synthesis. Nature 437, 121 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    R.L. Brutchey and D.E. Morse: Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. Angew. Chem. Int. Ed. 45, 6564 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    H. Liu, C. Hu, and Z.L. Wang: Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides. Nano Lett. 6, 1535 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    V. Bansal, P. Poddar, A. Ahmad, and M. Sastry: Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J. Am. Chem. Soc. 128, 11958 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    L. Huang, Z. Chen, J.D. Wilson, S. Banerjee, R.D. Robinson, I.O. Herman, R. Laibowitz, and S. O’Brien: Barium titanate nanocrystals and nanocrystal thin film: Synthesis, ferroelectricity and dielectric properties. J. Appl. Phys. 100, 034316 (2006).

    Article  CAS  Google Scholar 

  9. 9.

    B. Hou, Y. Xu, D. Wu, and Y. Sun: Preparation and characterization of single-crystalline barium strontium titanate nanocubes via solvothermal method. Powder Technol. 170, 26 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    K. Su, N. Nuraje, and N.L. Yang: Open-bench method for the preparation of BaTiO3, SrTiO3, and BaxSr1-xTiO3nanocrystals at 80 °C. Langmuir 23, 11269 (2007).

    Google Scholar 

  11. 11.

    N. Bao, L. Shen, G. Srinivasan, K. Yanagisawa, and A. Gupta: Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures. J. Phys. Chem. C 112, 8634 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    F. Nakasone, K. Kobayashi, T. Suzuki, Y. Mizuno, H. Chazono, and H. Imai: Nanoparticle-sintered BaTiO3 thin films and its orientation control by solid phase epitaxy. Jpn. J. Appl. Phys. 47, 8518 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    S. Adireddy, C. Lin, B. Cao, W. Zhou, and G. Caruntu: Solution-based growth of monodisperse cube-like BaTiO3 colloidal nanocrystals. Chem. Mater. 22, 1946 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    J. Varghese, R.W. Whatmore, and J.D. Holmes: Ferroelectric nanoparticles, wires, tubes: Synthesis, characterization and applications. J. Mater. Chem. 23, 2618–2638 (2013).

    Google Scholar 

  15. 15.

    E.K. Akdogan and A. Safari: Phenomenological theory of size effects on the cubic-tetragonal phase transition in BaTiO3 nanocrystals. Jpn. J. Appl. Phys. 41, 7170 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    T. Hoshina, T. Furuta, Y. Kigoshi, S. Hata, N. Horiuchi, H. Takeda, and T. Tsurumi: Size effect of nanograined BaTiO3 ceramics fabricated by aerosol deposition method. Jpn. J. Appl. Phys. 49, 09C02 (2010).

    Article  CAS  Google Scholar 

  17. 17.

    M.J. Polking, M.G. Han, A. Yourdkhani, V. Petkov, C.F. Kisielowski, V.V. Volkov, Y. Zhu, G. Caruntu, A.P. Alivisatos, and R. Ramesh: Ferroelectric order in individual nanometer scale crystals. Nat. Mater. 11, 700 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    T. Suzuki, K. Morito, and Y. Iwazaki: The latest advances in high-dielectric thin-film capacitor techonology for GHz-RF devices. Integr. Ferroelectr. 76, 47 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, and S. Streiffer: Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 100, 051606 (2006).

    Article  CAS  Google Scholar 

  20. 20.

    Y. Guo, K. Suzuki, K. Nishizawa, T. Miki, and K. Kato: Electrical properties of (100)-predominant BaTiO3 films derived from alkoxide solutions of two concentrations. Acta Mater. 54, 3893 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    D.V. Talapin: Nanocrystal solids: A modular approach to materials design. MRS Bull. 37, 63 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    H. Colfen and S. Mann: Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostrustures. Angew. Chem. Int. Ed. 42, 2350 (2003).

    Article  CAS  Google Scholar 

  23. 23.

    H. Colfen and M. Antonietti: Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 5576 (2005).

    Article  CAS  Google Scholar 

  24. 24.

    F. Dang, K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara: In situ growth BaTiO3 nanocubes and their superlattice from an aqueous process. Nanoscale 4, 1344 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    F. Dang, K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara: Growth of monodispersed SrTiO3 nanocubes by thermohydrolysis method. Cryst. Eng. Commun. 13, 3878 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    K. Mimura, F. Dang, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara: Fabrication of dielectric nanocubes in ordered structure by capillary force assisted self-assembly method and their piezoresponse properties. J. Nanosci. Nanotechnol. 12, 3853 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara: Piezoresponse properties of orderly assemblies of BaTiO3 and SrTiO3 nanocube single crystals. Appl. Phys. Lett. 101, 012901 (2012).

    Article  CAS  Google Scholar 

  28. 28.

    K. Mimura, K. Kato, H. Imai, S. Wada, H. Haneda, and M. Kuwabara: Fabrication and characterization of dielectric nanocube self-assembled structures. Jpn. J. Appl. Phys. 51, 09LC03 (2012).

    Article  Google Scholar 

  29. 29.

    K. Mimura and K. Kato: Characteristics of barium titanate nanocubes ordered assembly thin films fabricated by dip-coating method. Jpn. J. Appl. Phys. 52, 09KC06 (2013).

    Article  CAS  Google Scholar 

  30. 30.

    K. Mimura and K. Kato: Fabrication and piezoresponse properties of {100} BaTiO3 films containing highly-ordered nanocube assemblies on various substrates. J. Nanopart. Res. 30, 15 (2013).

    Google Scholar 

  31. 31.

    Y. Lu and J.D. Miller: Carboxyl stretching vibrations of spontaneously adsorbed and LB-transferred calcium carboxylates as determined by FTIR internal reflection spectroscopy. J. Colloid Interface Sci. 256, 41 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    Y.G. Aronoff, B. Chen, G. Lu, C. Seto, J. Schwartz, and S.L. Bernasek: Stabilization of self-assembled monolayers of carboxylic acids on native oxides of metals. J. Am. Chem. Soc. 119, 259 (1997).

    CAS  Article  Google Scholar 

  33. 33.

    A. Testino, M.T. Buscaglia, V. Buscaglia, M. Viviani, C. Bottino, and P. Nanni: Kinetics and mechanism of aqueous chemical synthesis of BaTiO3 particles. Chem. Mater. 16, 1536 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    K. Tomita, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura, and M. Kakihana: A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew. Chem. Int. Ed. 45, 2378 (2006).

    CAS  Article  Google Scholar 

  35. 35.

    H. Mockel, M. Giersig, and F. Willig: Formation of uniform size anatase nanocrystals from bis(ammonium lactato)titanium dihydroxide by thermohydrolysis. J. Mater. Chem. 9, 3051 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    A.S. Dimitrov and K. Nagayama: Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12, 1303 (1996).

    CAS  Article  Google Scholar 

  37. 37.

    S. Watanabe, K. Inukai, S. Mizuta, and M.T. Miyahara: Mechanism for stripe pattern formation on hydrophilic surfaces by using convective self-assembly. Langmuir 25, 7287 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    H.P. Sun, W. Tian, X.Q. Pan, J.H. Haeni, and D.G. Schlom: Evolution of dislocation arrays in epitaxial BaTiO3 thin films grown on (100) SrTiO3. Appl. Phys. Lett. 84, 3298 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    R.W. Schwartz, P.G. Clem, J.A. Voigt, E.R. Byhoff, M.V. Stry, T.J. Headley, and N.A. Missert: Control of microstructure and orientation in solution-deposited BaTiO3 and SrTiO3 thin films. J. Am. Ceram. Soc. 82, 2359 (1999).

    CAS  Article  Google Scholar 

  40. 40.

    S. Hoffmann and R. Waser: Control of the morphology of CSD-prepared (Ba, Sr)TiO3 thin films. J. Eur. Ceram. Soc. 19, 1339 (1999).

    CAS  Article  Google Scholar 

  41. 41.

    T. Harigai, S.M. Nam, H. Kakemoto, S. Wada, K. Saito, and T. Tsurumi: Structural and dielectric properties of perovskite-type artificial superlattices. Thin Solid Films 509, 13 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    S. Disch, E. Wetterskog, R.P. Hermann, G.S. Alvarez, P. Busch, T. Bruckel, L. Bergstrom, and S. Kamali: Shape induced symmetry in self-assembled mesocrystals of iron oxide nanocubes. Nano Lett. 11, 1651 (2011).

    CAS  Article  Google Scholar 

  43. 43.

    A. Demortiere, P. Launois, N. Goubet, P.A. Albouy, and C. Petit: Shape-controlled platinum nanocubes and their assembly into two-dimensional and three-dimensional superlattices. J. Phys. Chem. B 112, 14583 (2008).

    CAS  Article  Google Scholar 

  44. 44.

    H. Chan, A. Demortiere, L. Vukovic, P. Kral, and C. Petit: Colloidal nanocube supercrystals stabilized by multipolar coulombic coupling. ASC Nano 6, 4203 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    S. Hong, J. Woo, H. Shin, J.U. Jeon, Y.E. Pak, E.L. Colla, N. Setter, E. Kim, and K. No: Principle of ferroelectric domain imaging using atomic force microscope. J. Appl. Phys. 89, 1377 (2001).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Collaborative Research Consortium of Nanocrystal Ceramics and the Advanced Low Carbon Technology Research and Development Program (ALCA) of Japan Science and Technology Agency (JST).

Author information



Corresponding author

Correspondence to Kazumi Kato.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kato, K., Mimura, Ki., Dang, F. et al. BaTiO3 nanocube and assembly to ferroelectric supracrystals. Journal of Materials Research 28, 2932–2945 (2013).

Download citation