Mixed-mode mechanical responses of Ni(111)/α-Al2O3(0001) interface by first-principle calculations

Abstract

Under the mixed-mode loading condition, mechanical responses of the Al-terminated O-site Ni(111)/α-Al2O3(0001) interface are investigated using first-principle calculations. The displacement-controlled loadings along 22.5, 45, and 67.5° orientations with respect to the interface are applied. The tension and shear responses of the interface are elaborated according to the computational results, including the mechanical strengths, the effect of tension softening, and the failure characteristic. In addition, the stress versus displacement relationships are derived out based on the general approach suggested by [Sun et al., Mater. Sci. Eng., A170, 67 (1993)], and the deviations between the analytical and computational results are examined in particular. Furthermore, the potential function and its development of this interface are discussed in detail.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
TABLE I.
FIG. 9.
FIG. 10.

References

  1. 1.

    A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit: Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 46, 505 (2001).

    Article  Google Scholar 

  2. 2.

    N.P. Padture, M. Gell, and E.H. Jordan: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    W. Zhang, J.R. Smith, and A.G. Evans: The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3. Acta Mater. 50, 3803 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    S. Shi, S. Tanaka, and M. Kohyama: First-principles study of the tensile strength and failure of α-Al2O3(0001)/Ni(111) interfaces. Phys. Rev. B 76, 075431 (2007).

    Article  Google Scholar 

  5. 5.

    Y. Jiang, Y.G. Wei, J.R. Smith, J.W. Hutchinson, and A.G. Evans: First principles based predictions of the toughness of a metal/oxide interface. Int. J. Mater. Res. 101, 8 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    X. Guo and F. Shang: Reinvestigation of the tensile strength and fracture property of Ni(111)/α-Al2O3(0001) interfaces by first-principle calculations. Comp. Mater. Sci. 50, 1711 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    K.A. Marino, B. Hinnemann, and E.A. Carter: Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory. Proc. Natl. Acad. Sci. U.S.A. 108, 5480 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    X. Guo and F. Shang: Shear strength and sliding behavior of Ni/Al2O3 interfaces: A first-principle study. J. Mater. Res. 27, 1237 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    H. Meltzman, D. Mordehai, and W.D. Kaplan: Solid-solid interface reconstruction at equilibrated Ni-Al2O3 interfaces. Acta Mater. 60, 4359 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    S. Shi, S. Tanaka, and M. Kohyama: First-principles investigation of the atomic and electronic structures of α-Al2O3(0001)/Ni(111) interfaces. J. Am. Ceram. Soc. 90, 8 (2007).

    Google Scholar 

  11. 11.

    S. Shi, S. Tanaka, and M. Kohyama: First-principles study on the adhesion nature of the α-Al2O3(0001)/Ni(111) interface. Modell. Simul. Mater. Sci. Eng. 14, S21 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    S. Shi, S. Tanaka, and M. Kohyama: Influence of interface structure on Schottky barrier heights of α-Al2O3(0001)/Ni(111) interfaces: A first-principles study. Mater. Trans. 47, 2696 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    G.I. Barenblatt: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55 (1962).

    Article  Google Scholar 

  14. 14.

    D.S. Dugdale: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100 (1960).

    Article  Google Scholar 

  15. 15.

    A. Needleman: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525 (1987).

    Article  Google Scholar 

  16. 16.

    J. Hutchinson and Z. Suo: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 191 (1992).

    Google Scholar 

  17. 17.

    C.R. Krenn, D. Roundy, M.L. Cohen, D.C. Chrzan, and J.W. Morris Jr.: Connecting atomistic and experimental estimates of ideal strength. Phys. Rev. B 65, 134111 (2002).

    Article  Google Scholar 

  18. 18.

    M. Černý and J. Pokluda: Influence of normal stress on theoretical shear strength of fcc metals. Mater. Sci. Eng., A 483–484, 692 (2008).

    Article  Google Scholar 

  19. 19.

    M. Černý, P. Sesták, and J. Pokluda: Influence of superimposed normal stress on shear strength of perfect bcc crystals. Comp. Mater. Sci. 47, 907 (2010).

    Article  Google Scholar 

  20. 20.

    Y. Umeno and M. Černý: Effect of normal stress on the ideal shear strength in covalent crystals. Phys. Rev. B 77, 100101 (2008).

    Article  Google Scholar 

  21. 21.

    Y. Sun, G.E. Beltz, and J.R. Rice: Estimates from atomic models of tension-shear coupling in dislocation nucleation from a crack tip. Mater. Sci. Eng., A 170, 67 (1993).

    Article  Google Scholar 

  22. 22.

    K.D. da Silva, G.E. Beltz, and A. Machová: Tension–shear coupling in slip and decohesion of iron crystals. Scr. Mater. 49, 1163 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    P. Lazar and R. Podloucky: Ab initio study of tension-shear coupling in NiAl. Phys. Rev. B 75, 024112 (2007).

    Article  Google Scholar 

  24. 24.

    J.H. Rose, J. Ferrante, and J.R. Smith: Universal binding-energy curves for metals and bimetallic interfaces. Phys. Rev. Lett. 47, 675 (1981).

    CAS  Article  Google Scholar 

  25. 25.

    J. Frenkel: Zur theorie der elastizitätsgrenze und der festigkeit kristallinischer körper. Z. Phys. 37, 572 (1926).

    Article  Google Scholar 

  26. 26.

    G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    CAS  Article  Google Scholar 

  27. 27.

    G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Article  Google Scholar 

  28. 28.

    P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. B 136, B864 (1964).

    Article  Google Scholar 

  29. 29.

    W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965).

    Article  Google Scholar 

  30. 30.

    P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  31. 31.

    G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    CAS  Article  Google Scholar 

  32. 32.

    J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    CAS  Article  Google Scholar 

  33. 33.

    H.J. Monkhorst and J.D. Pack: Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  34. 34.

    Y. Umeno and T. Kitamura: Ab initio simulation on ideal shear strength of silicon. Mater. Sci. Eng., B 88, 79 (2002).

    Article  Google Scholar 

  35. 35.

    J.R. Rice: Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239 (1992).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NSAF through Grant No. U1330116 and Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110201110019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fulin Shang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guo, X., Bao, Z. & Shang, F. Mixed-mode mechanical responses of Ni(111)/α-Al2O3(0001) interface by first-principle calculations. Journal of Materials Research 28, 3018–3028 (2013). https://doi.org/10.1557/jmr.2013.294

Download citation