Abstract
Under the mixed-mode loading condition, mechanical responses of the Al-terminated O-site Ni(111)/α-Al2O3(0001) interface are investigated using first-principle calculations. The displacement-controlled loadings along 22.5, 45, and 67.5° orientations with respect to the interface are applied. The tension and shear responses of the interface are elaborated according to the computational results, including the mechanical strengths, the effect of tension softening, and the failure characteristic. In addition, the stress versus displacement relationships are derived out based on the general approach suggested by [Sun et al., Mater. Sci. Eng., A170, 67 (1993)], and the deviations between the analytical and computational results are examined in particular. Furthermore, the potential function and its development of this interface are discussed in detail.
This is a preview of subscription content, access via your institution.











References
- 1.
A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit: Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 46, 505 (2001).
- 2.
N.P. Padture, M. Gell, and E.H. Jordan: Thermal barrier coatings for gas-turbine engine applications. Science 296, 280 (2002).
- 3.
W. Zhang, J.R. Smith, and A.G. Evans: The connection between ab initio calculations and interface adhesion measurements on metal/oxide systems: Ni/Al2O3 and Cu/Al2O3. Acta Mater. 50, 3803 (2002).
- 4.
S. Shi, S. Tanaka, and M. Kohyama: First-principles study of the tensile strength and failure of α-Al2O3(0001)/Ni(111) interfaces. Phys. Rev. B 76, 075431 (2007).
- 5.
Y. Jiang, Y.G. Wei, J.R. Smith, J.W. Hutchinson, and A.G. Evans: First principles based predictions of the toughness of a metal/oxide interface. Int. J. Mater. Res. 101, 8 (2010).
- 6.
X. Guo and F. Shang: Reinvestigation of the tensile strength and fracture property of Ni(111)/α-Al2O3(0001) interfaces by first-principle calculations. Comp. Mater. Sci. 50, 1711 (2011).
- 7.
K.A. Marino, B. Hinnemann, and E.A. Carter: Atomic-scale insight and design principles for turbine engine thermal barrier coatings from theory. Proc. Natl. Acad. Sci. U.S.A. 108, 5480 (2011).
- 8.
X. Guo and F. Shang: Shear strength and sliding behavior of Ni/Al2O3 interfaces: A first-principle study. J. Mater. Res. 27, 1237 (2012).
- 9.
H. Meltzman, D. Mordehai, and W.D. Kaplan: Solid-solid interface reconstruction at equilibrated Ni-Al2O3 interfaces. Acta Mater. 60, 4359 (2012).
- 10.
S. Shi, S. Tanaka, and M. Kohyama: First-principles investigation of the atomic and electronic structures of α-Al2O3(0001)/Ni(111) interfaces. J. Am. Ceram. Soc. 90, 8 (2007).
- 11.
S. Shi, S. Tanaka, and M. Kohyama: First-principles study on the adhesion nature of the α-Al2O3(0001)/Ni(111) interface. Modell. Simul. Mater. Sci. Eng. 14, S21 (2006).
- 12.
S. Shi, S. Tanaka, and M. Kohyama: Influence of interface structure on Schottky barrier heights of α-Al2O3(0001)/Ni(111) interfaces: A first-principles study. Mater. Trans. 47, 2696 (2006).
- 13.
G.I. Barenblatt: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55 (1962).
- 14.
D.S. Dugdale: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100 (1960).
- 15.
A. Needleman: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525 (1987).
- 16.
J. Hutchinson and Z. Suo: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 191 (1992).
- 17.
C.R. Krenn, D. Roundy, M.L. Cohen, D.C. Chrzan, and J.W. Morris Jr.: Connecting atomistic and experimental estimates of ideal strength. Phys. Rev. B 65, 134111 (2002).
- 18.
M. Černý and J. Pokluda: Influence of normal stress on theoretical shear strength of fcc metals. Mater. Sci. Eng., A 483–484, 692 (2008).
- 19.
M. Černý, P. Sesták, and J. Pokluda: Influence of superimposed normal stress on shear strength of perfect bcc crystals. Comp. Mater. Sci. 47, 907 (2010).
- 20.
Y. Umeno and M. Černý: Effect of normal stress on the ideal shear strength in covalent crystals. Phys. Rev. B 77, 100101 (2008).
- 21.
Y. Sun, G.E. Beltz, and J.R. Rice: Estimates from atomic models of tension-shear coupling in dislocation nucleation from a crack tip. Mater. Sci. Eng., A 170, 67 (1993).
- 22.
K.D. da Silva, G.E. Beltz, and A. Machová: Tension–shear coupling in slip and decohesion of iron crystals. Scr. Mater. 49, 1163 (2003).
- 23.
P. Lazar and R. Podloucky: Ab initio study of tension-shear coupling in NiAl. Phys. Rev. B 75, 024112 (2007).
- 24.
J.H. Rose, J. Ferrante, and J.R. Smith: Universal binding-energy curves for metals and bimetallic interfaces. Phys. Rev. Lett. 47, 675 (1981).
- 25.
J. Frenkel: Zur theorie der elastizitätsgrenze und der festigkeit kristallinischer körper. Z. Phys. 37, 572 (1926).
- 26.
G. Kresse and J. Hafner: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).
- 27.
G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).
- 28.
P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. B 136, B864 (1964).
- 29.
W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, 1133 (1965).
- 30.
P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
- 31.
G. Kresse and D. Joubert: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).
- 32.
J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).
- 33.
H.J. Monkhorst and J.D. Pack: Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).
- 34.
Y. Umeno and T. Kitamura: Ab initio simulation on ideal shear strength of silicon. Mater. Sci. Eng., B 88, 79 (2002).
- 35.
J.R. Rice: Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239 (1992).
Acknowledgments
This work was supported by NSAF through Grant No. U1330116 and Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110201110019).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guo, X., Bao, Z. & Shang, F. Mixed-mode mechanical responses of Ni(111)/α-Al2O3(0001) interface by first-principle calculations. Journal of Materials Research 28, 3018–3028 (2013). https://doi.org/10.1557/jmr.2013.294
Received:
Accepted:
Published:
Issue Date: