Detection of surface electronic defect states in low and high-k dielectrics using reflection electron energy loss spectroscopy

Abstract

The continuation of Moore’s law requires new materials at both extremes of the dielectric permittivity spectrum and an increased understanding of the fundamental mechanisms limiting their electrical reliability. To address the latter, reflection electron energy loss spectroscopy has been utilized to measure the band gap of various oxide-based low and high dielectric constant (k) materials of interest to the semiconductor industry. In situ Ar+ sputtering has been additionally utilized to simulate process-induced defect states that are believed to contribute to electrical leakage, time-dependent dielectric breakdown, charge trapping, and other fixed-charge reliability issues in nano-electronic devices. It is observed that Ar+ sputtering predominantly generates surface oxygen vacancy defects in the upper portion of the band gap for both low and high-k dielectric materials. These results are in agreement with numerous theoretical investigations of defects in low and high-k dielectric materials and models for mechanisms that limit their reliability.

This is a preview of subscription content, access via your institution.

TABLE I.
TABLE II.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

References

  1. 1.

    P. Solomon: Breakdown in silicon oxide: A review. J. Vac. Sci. Technol. 14, 1122 (1977).

    CAS  Article  Google Scholar 

  2. 2.

    K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, and Z.S. Yanovitskaya: Low dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793 (2003).

    CAS  Article  Google Scholar 

  3. 3.

    W. Volksen, R.D. Miller, and G. Dubois: Low dielectric constant materials. Chem. Rev. 110, 56 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    G.D. Wilk, R.M. Wallace, and J.M. Anthony: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    R.H. Dennard, F.H. Gaensslen, H.N. Yu, V.L. Rideout, E. Bassous, and A.R. LeBlanc: Design of ion-implanted MOSFETs with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256 (1974).

    Article  Google Scholar 

  6. 6.

    J. Robertson: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    G. Moore: Cramming more components onto integrated circuits. Electron. Mag. 38, 4 (1965).

    Google Scholar 

  8. 8.

    C. Auth, A. Cappellani, J.-S. Chun, A. Dalis, A. Davis, T. Ghani, G. Glass, T. Glassman, M. Harper, M. Hattendorf, P. Hentges, S. Jaloviar, S. Joshi, J. Klaus, K. Kuhn, D. Lavric, M. Lu, H. Mariappan, K. Mistry, B. Norris, N. Rahhal-orabi, P. Ranade, J. Sandford, L. Shifren, V. Souw, K. Tone, F. Tambwe, A. Thompson, D. Towner, T. Troeger, P. Vandervoorn, C. Wallace, J. Wiedemer, and C. Wiegand: 45nm high-k + metal gate strain-enhanced transistors. In IEEE VLSI Technology Symposium, Honolulu, HI, 2008; p. 128.

    Google Scholar 

  9. 9.

    G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo: Review on high-k dielectrics reliability issues. IEEE Trans. Device Mater. Reliab. 5, 5 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    A. Kerber and E.A. Cartier: Reliability challenges for CMOS technology qualifications with hafnium oxide/titanium nitride gate stacks. IEEE Trans. Device Mater. Reliab. 9, 147 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    G. Haase: A model for electric degradation of interconnect low-k dielectrics in microelectronic integrated circuits. J. Appl. Phys. 105, 44908 (2009).

    Article  CAS  Google Scholar 

  12. 12.

    K.J. Kuhn: Moore’s crystal ball: Device physics and technology past the 15 nm generation. Microelectron. Eng. 88, 1044 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    International Technology Roadmap for Semiconductors (ITRS): 2009 (Semiconductor Industry Association, San Jose, CA, 2009). http://www.itrs.net/Links/2009ITRS/Home2009.htm.

  14. 14.

    Y. Ou, P. Wang, M. He, T. Lu, P. Leung, and T. Spooner: Conduction mechanisms of Ta/porous SiCOH films under electrical bias. J. Electrochem. Soc. 155, G283 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    R. Wang, K. Chang-Liao, T. Wang, M. Chang, C. Wang, C. Lin, C. Lee, C. Chiu, and K. Wu: Electrical conduction and TDDB reliability characterization for low-k SiCO dielectric in Cu interconnects. Thin Solid Films 517, 1230 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Y.C. Yeo, T.J. King, and C. Hu: Dielectric tunneling leakage current and scalability of alternative gate dielectrics. Appl. Phys. Lett. 81, 2091 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    Z. Xu, M. Houssa, S. De Gendt, and M. Heyns: Polarity effect on the temperature dependence of leakage current through HfO2/SiO2 gate dielectric stacks. Appl. Phys. Lett. 80, 1975 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    C. Chiang, I. Ko, M. Chen, Z. Wu, Y. Lu, S. Jang, and M. Liang: Improvement in leakage current and breakdown field of Cu-comb capacitor using a silicon oxycarbide dielectric barrier. J. Electrochem. Soc. 151, G606 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    F. Chen and M. Shinovsky: Soft breakdown characteristics of ultralow-k time dependent dielectric breakdown for advanced complementary metal-oxide semiconductor technologies. J. Appl. Phys. 108, 54107 (2010).

    Article  CAS  Google Scholar 

  20. 20.

    S. Lombardo, J.H. Stathis, B.P. Linder, K.L. Pey, F. Palumbo, and C.H. Tung: Dielectric breakdown mechanisms in gate oxides. J. Appl. Phys. 98, 121301 (2005).

    Article  CAS  Google Scholar 

  21. 21.

    J. McPherson: Time dependent dielectric breakdown physics–models revisited. Microelectron. Reliab. 52, 1753 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    F. Chen and M. Shinovsky: Addressing Cu/low-k dielectric TDDB-reliability challenges for advanced CMOS technologies. IEEE Trans. Electron Devices 56, 2 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    L. Zhao, M. Pantouvaki, K. Croes, Z. Tokei, Y. Barbarin, C. Wilson, M. Baklanov, G. Beyer, and C. Claeys: Role of copper in time dependent dielectric breakdown of porous organo-silicate glass low-k materials. Appl. Phys. Lett. 99, 222110 (2011).

    Article  CAS  Google Scholar 

  24. 24.

    T. Kauerauf, R. Degraeve, E. Cartier, C. Soens, and G. Groeseneken: Low Weibull slope of breakdown distributions in high-k layers. IEEE Electron Device Lett. 23, 215 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    E. Rosenbaum and L.F. Register: Mechanism of stress-induced leakage current in MOS capacitors. IEEE Trans. Electron Devices 44, 317 (1997).

    CAS  Article  Google Scholar 

  26. 26.

    S. Pae, T. Ghani, M. Hattendorf, J. Hicks, J. Jopling, J. Maiz, K. Mistry, J. O’Donnell, C. Prasad, J. Wiedemer, and J. Xu: Characterization of SILC and its end-of-life reliability assessment on 45 nm high-k and metal-gate technology. In Proceedings of the IEEE International Reliability Physics Symposium, Montreal, QC (IEEE, 2009); p. 499.

    Google Scholar 

  27. 27.

    X.J. Zhou, L. Tsetseris, S.N. Rashkeev, D.M. Fleetwood, R.D. Schrimpf, S.T. Pantelides, J.A. Felix, E.P. Gusev, and C. D’Emic: Negative bias-temperature instabilities in metal-oxide-silicon devices with SiO2 and SiOxNy/HfO2 gate dielectrics. Appl. Phys. Lett. 84, 4394 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    A. Rahman, M. Agostinelli, P. Bai, G. Curello, H. Deshpande, W. Hafez, C-H. Jan, K. Komeyli, J. Park, K. Phoa, C. Tsai, J-Y. Yen, and J. Xu: Reliability studies of a 32 nm System-on-chip (SOC) platform technology with 2nd generation high-k/metal gate transistors. Proceedings of the IEEE International Reliability Physics Symposium, Monterey, CA (IEEE, 2011); p. 533.

    Google Scholar 

  29. 29.

    J.L. Lauer, H. Sinha, M.T. Nichols, G.A. Antonelli, Y. Nishi, and J.L. Shohet: Charge trapping within UV and vacuum UV irradiated low-k porous organosilicate dielectrics. J. Electrochem. Soc. 157, G177 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    J. Atkin, E. Cartier, T.M. Shaw, R.B. Laibowitz, and T.F. Heinz: Charge trapping at the low-k dielectric-silicon interface probed by the conductance and capacitance techniques. Appl. Phys. Lett. 93, 122902 (2008).

    Article  CAS  Google Scholar 

  31. 31.

    W.J. Zhu, T.P. Ma, and T. Tamagawa: Charge trapping in ultrathin hafnium oxide. IEEE Electron Device Lett. 23, 597 (2002).

    CAS  Article  Google Scholar 

  32. 32.

    M. Bargallo Gonzalez, J.M. Rafi, O. Beldarrain, M. Zabala, and F. Campabadal: Charge trapping analysis of Al2O3 films deposited by atomic layer deposition using H2O or O3 as oxidant. J. Vac. Sci. Technol., B 31, 1A101 (2013).

    Article  CAS  Google Scholar 

  33. 33.

    H. Sinha, M. Nichols, A. Sehgal, M. Tomoyasu, N. Russell, G. Antonelli, Y. Nishi, and J. Shohet: Effect of vacuum ultraviolet and ultraviolet irradiation on mobile charges in the bandgap of low-k-porous organosilicate dielectric. J. Vac. Sci. Technol. 29, 10601 (2011).

    Article  CAS  Google Scholar 

  34. 34.

    G. Bersuker, P. Zeitzoff, J.H. Sim, B.H. Lee, R. Choi, G. Brown, and C.D. Young: Mobility evaluation in transistors with charge-trapping gate dielectrics. Appl. Phys. Lett. 87, 42905 (2005).

    Article  CAS  Google Scholar 

  35. 35.

    V. Ligatchev, T.K.S. Wong, B. Liu, and Rusli: Atomic structure and defect densities in low dielectric constant carbon doped hydrogenated silicon oxide films, deposited by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 92, 4605 (2002).

    CAS  Article  Google Scholar 

  36. 36.

    J.M. Atkin, D. Song. T.M. Shaw, E. Cartier, R.B. Laibowitz, and T.F. Heinz: Photocurrent spectroscopy of low-k dielectrics materials: Barrier heights and trap densities. J. Appl. Phys. 103, 94104 (2008).

    Article  CAS  Google Scholar 

  37. 37.

    J.M. Atkin, E. Cartier, T.M. Shaw, J.R. Lloyd, R.B. Laibowitz, and T.F. Heinz: The evolution of optical and electrical properties of low-k dielectrics under bias stress. Microelectron. Eng. 86, 1891 (2009).

    CAS  Article  Google Scholar 

  38. 38.

    G. Bersuker, J.H. Sim, C.D. Young, R. Choi, M. Zeitzoff, G.A. Brown, B.H. Lee, and R.W. Murto: Effect of pre-existing defects on reliability assessment of high-k gate dielectrics. Microelectron. Reliab. 44, 1509 (2004).

    CAS  Article  Google Scholar 

  39. 39.

    M. Houssa, M. Tuominen, M. Naili, V. Afanas’ev, A. Stesmans, S. Haukka, and M.M. Heyns: Trap-assisted tunneling in high permittivity gate dielectric stacks. J. Appl. Phys. 87, 8615 (2000).

    CAS  Article  Google Scholar 

  40. 40.

    E. Harrari and B.S.H. Royce: Trap structure of pyrolytic Al2O3 in MOS capacitors. Appl. Phys. Lett. 22, 106 (1973).

    Article  Google Scholar 

  41. 41.

    R. Ludeke, M.T. Cuberes, and E. Cartier: Local transport and trapping issues in Al2O3 gate oxide structures. Appl. Phys. Lett. 76, 2886 (2000).

    CAS  Article  Google Scholar 

  42. 42.

    M. Specht, M. Stadele, S. Jakschik, and U. Schroder: Transport mechanisms in atomic-layer-deposited Al2O3 dielectrics. Appl. Phys. Lett. 84, 3076 (2004).

    CAS  Article  Google Scholar 

  43. 43.

    O. Blank, H. Reisinger, R. Stengl, M. Gutsche, F. Wiest, V. Capodieci, J. Schulze, and I. Eisele: A model for multistep trap-assisted tunneling in thin high-k dielectrics. J. Appl. Phys. 97, 44107 (2005).

    Article  CAS  Google Scholar 

  44. 44.

    L. Sambuco-Salomone, J. Lipovetsky, S.H. Carbonetto, M.A. Garcia Inza, E.G. Redin, F. Campabadal, and A. Faigon: Experimental evidence and modeling of two types of electron traps in Al2O3 for nonvolatile memory applications. J. Appl. Phys. 113, 74501 (2013).

    Article  CAS  Google Scholar 

  45. 45.

    J.R. Chaves, R.A.B. Devine, and L. Koltunski: Evidence for hole and electron trapping in plasma deposited thin films. J. Appl. Phys. 90, 4284 (2001).

    Article  CAS  Google Scholar 

  46. 46.

    J.H. Stathis: Physical and predictive models of ultrathin oxide reliability in CMOS devices and circuits. IEEE Trans. Dev. Mater. Reliab. 1, 43 (2001).

    CAS  Article  Google Scholar 

  47. 47.

    P.M. Lenahan and J.F. Conley, Jr: What can electron paramagnetic resonance tell us about the Si/SiO2 system?. J. Vac. Sci. Technol., B 16, 2134 (1998).

    CAS  Article  Google Scholar 

  48. 48.

    L. Skuja: Optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids 239, 16 (1998).

    CAS  Article  Google Scholar 

  49. 49.

    N.L. Anderson, R.P. Vedula, P.A. Schultz, R.M. Van Ginhoven, and A. Strachan: Defect level distributions and atomic relaxations induced by charge trapping in amorphous silica. Appl. Phys. Lett. 100, 172908 (2012).

    Article  CAS  Google Scholar 

  50. 50.

    M. Heyns and W. Tsai: Ultimate scaling of CMOS logic devices with Ge and III-V materials. MRS Bull. 34, 485 (2009).

    Article  Google Scholar 

  51. 51.

    K. Kim, J.Y. Choi, T. Kim, S.H. Cho, and H.J. Chung: A role for graphene in silicon-based semiconductor devices. Nature 479, 338 (2011).

    CAS  Article  Google Scholar 

  52. 52.

    R. Murali, K. Brenner, Y. Yang, T. Beck, and J.D. Meindl: Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett. 30, 611 (2009).

    Article  Google Scholar 

  53. 53.

    X. Chen, D. Akinwande, K.J. Lee, G.F. Close, S. Yasuda, B.B. Paul, S. Fujita, J. Kong, and H.S. Philip Wong: Fully integrated graphene and carbon nanotube interconnects for gigahertz high-speed CMOS electronics. IEEE Trans. Electron Devices 57, 3137 (2010).

    CAS  Article  Google Scholar 

  54. 54.

    W. Tsai, N. Goel, S. Koveshnikov, P. Majhi, and W. Wang: Challenges of integration of high-k dielectrics with III-V materials. Microelectron. Eng. 86, 1540 (2009).

    CAS  Article  Google Scholar 

  55. 55.

    L. Lin and J. Robertson: Passivation of interfacial defects at III-V oxide interfaces. J. Vac. Sci. Technol., B 30, 4E101 (2012).

    Article  CAS  Google Scholar 

  56. 56.

    K. Nagashino, T. Yamashita, T. Nishimura, K. Kita and A. Tonumi: AU11 Electrical transport properties of graphene on SiO2 with specific surface structures. J. Appl. Phys. 110, 24513 (2011).

    Article  CAS  Google Scholar 

  57. 57.

    X.F. Fan, W.T. Zheng, V. Chihaia, Z.X. Shen, and J.L. Kuo: Interaction between graphene and the surface of SiO2. J. Phys. Condens. Matter 24, 305004 (2012).

    CAS  Article  Google Scholar 

  58. 58.

    V.C. Ngwan, C. Zhu, and A. Krishnamoorthy: Dependence of leakage mechanisms on dielectric barrier in Cu-SiOC damascene interconnects. Appl. Phys. Lett. 84, 2316 (2004).

    CAS  Article  Google Scholar 

  59. 59.

    K.Y. Yiang, W.J. Yoo, Q. Guo, and A. Krishnamoorthy: Investigation of electrical conduction in carbon-doped silicon oxide using a voltage ramp method. Appl. Phys. Lett. 83, 524 (2003).

    CAS  Article  Google Scholar 

  60. 60.

    G.G. Gischia, K. Croes, G. Groeseneken, Z. Tokei, V. Afanas’ev, and L. Zhao: Study of leakage mechanism and trap density in porous low-k materials. Proceedings of the IEEE International Reliability Physics Symposium, Anaheim, CA (IEEE, 2010); p. 539.

    Google Scholar 

  61. 61.

    G. Jegert, A. Kersch, W. Weinreich, U. Schroder, and P. Lugli: Modeling of leakage currents in high-k dielectrics: Three dimensional approach via Monte Carlo. Appl. Phys. Lett. 96, 62113 (2010).

    Article  CAS  Google Scholar 

  62. 62.

    D. Ruiz Agaudo, B. Govoreanu, W. Dong Zhang, M. Jurczak, K. De Meyer, and J. Van Houdt: A novel trapping/detrapping model for defect profiling in high-k materials using the two-pulse capacitance-voltage technique. IEEE Trans. Electron Devices 57, 2726 (2010).

    Article  CAS  Google Scholar 

  63. 63.

    M. Wang, W. He, and T.P. Ma: Electron tunneling spectroscopy study of traps in high-k gate dielectrics: Determination of physical locations and energy levels of traps. Appl. Phys. Lett. 86, 192113 (2005).

    Article  CAS  Google Scholar 

  64. 64.

    Z. Liu and T.P. Ma: Determination of energy and spatial distributions of traps in ultrathin dielectrics by use of inelastic electron tunneling spectroscopy. Appl. Phys. Lett. 97, 172102 (2010).

    Article  CAS  Google Scholar 

  65. 65.

    R. Rao and F. Irrera: Detrapping dynamics in Al2O3 metal-oxide-semiconductor. J. Appl. Phys. 107, 103708 (2010).

    Article  CAS  Google Scholar 

  66. 66.

    C.C. Yeh, T.P. Ma, N. Ramaswamy, N. Rocklein, D. Gealy, T. Graettinger, and K. Min: Frenkel-Poole trap energy extraction of atomic layer deposited Al2O3 and HfxAlyO thin films. Appl. Phys. Lett. 91, 113521 (2007).

    Article  CAS  Google Scholar 

  67. 67.

    X.F. Zheng, W.D. Zhang, B. Govoreanu, J.F. Zhang, and J. van Houdt: A new multipulse technique for probing electron trap energy distribution in high-k materials for flash memory application. IEEE Trans. Elect. Dev. 57, 2484 (2010).

    CAS  Article  Google Scholar 

  68. 68.

    D.W. Winslow, J.P. Johnson, and C.C. Williams: Nanometer scale study of HfO2 trap states using single electron tunneling force spectroscopy. Appl. Phys. Lett. 98, 172903 (2011).

    Article  CAS  Google Scholar 

  69. 69.

    D.S. Jeong and C.S. Hwang: Tunneling-assisted Poole-Frenkel conduction mechanism in HfO2 thin films. J. Appl. Phys. 98, 113701 (2005).

    Article  CAS  Google Scholar 

  70. 70.

    S. Shamuilia, V. Afanas’ev, P. Somers, A. Stesmans, Y. Li, Z. Tokei, G. Groeseneken, and K. Maex: Internal photoemission of electrons at interfaces of metals with low-k insulators. Appl. Phys. Lett. 89, 202909 (2006).

    Article  CAS  Google Scholar 

  71. 71.

    K. Tanbara and Y. Kamigaki: Paramagnetic defect generation and microstructure change in porous low-k SiOCH films with vacuum baking. J. Electrochem. Soc. 157, G95 (2010).

    CAS  Article  Google Scholar 

  72. 72.

    H. Ren, M. Nichols, G. Jiang, G. Antonelli, Y. Nishi, and J. Shohet: Defects in low-k organosilicate glass and their response to processing as measured with electron-spin resonance. Appl. Phys. Lett. 98, 102903 (2011).

    Article  CAS  Google Scholar 

  73. 73.

    V. Afanas’ev, K. Keunen, A. Stesmans, M. Jivanescu, Z. Tokei, M. Baklanov, and G. Beyer: Electron spin resonance study of defects in low-k oxide insulators (k=2.5-2.0). Microelectron. Eng. 88, 1503 (2011).

    Article  CAS  Google Scholar 

  74. 74.

    A.Y. Kang, P.M. Lenahan, J.F. Conley Jr., and R. Solanki: Electron spin resonance study of interface defects in atomic layer deposited hafnium oxide on Si. Appl. Phys. Lett. 81, 1128 (2002).

    CAS  Article  Google Scholar 

  75. 75.

    A.Y. Kang, P.M. Lenahan, and J.F. Conley Jr.: Electron spin resonance observation of trapped electron centers in atomic layer deposited hafnium oxide on Si. Appl. Phys. Lett. 83, 3407 (2003).

    CAS  Article  Google Scholar 

  76. 76.

    P.M. Lenahan and J.F. Conley Jr.: Magnetic resonance studies of trapping centers in high-k dielectric films on silicon. IEEE Trans. Dev. Mater. Reliab. 5, 90 (2005).

    CAS  Article  Google Scholar 

  77. 77.

    T. Kanashima, K. Ikeda, T. Tada, M. Sohgawa, and M. Okuyama: Electron spin resonance characterization of defects in high-k HfO2 thin film prepared by pulsed laser deposition. J. Korean Phys. Soc. 46, 258 (2005).

    CAS  Google Scholar 

  78. 78.

    B.B. Triplett, P.T. Chen, Y. Nishi, P.H. Kasai, J.J. Chambers, and L. Colombo: Electron spin resonance study of as-deposited and annealed (HfO2)x(SiO2)1-x high-k dielectrics on Si. J. Appl. Phys. Lett. 101, 13703 (2007).

    Google Scholar 

  79. 79.

    R.C. Barklie and S. Wright: Electron paramagnetic resonance characterization of defects in HfO2 and ZrO2 powders and films. J. Vac. Sci. Technol., B 27, 317 (2009).

    CAS  Article  Google Scholar 

  80. 80.

    S. Wright and R.C. Barklie: Electron paramagnetic resonance characterization of defects in monoclinic HfO2 and ZrO2 powders. J. Appl. Phys. 106, 103917 (2009).

    Article  CAS  Google Scholar 

  81. 81.

    R.H. Bartram, C.E. Swenberg, and J.T. Fournier: Theory of trapped-hole centers in aluminum oxide. Phys. Rev. 139, 941 (1965).

    CAS  Article  Google Scholar 

  82. 82.

    S. Ciraci and I.P. Batra: Electronic structure of a-alumina and its defect states. Phys. Rev. B 28, 982 (1983).

    CAS  Article  Google Scholar 

  83. 83.

    G.J. Dienes, D.O. Welch, C.R. Fischer, R.D. Hatcher, O. Lazareth, and M. Samberg: Shell-model calculation of some point-defect properties in a-Al2O3. Phys. Rev. B 11, 3060 (1975).

    CAS  Article  Google Scholar 

  84. 84.

    A. Stashans, E. Kotomin, and J-L. Calais: Calculations of the ground and excited states of F-type centers in corundum crystal. Phys. Rev. B 49, 14854 (1994).

    CAS  Article  Google Scholar 

  85. 85.

    Y-N. Xu, Z-Q. Gu, Z-F. Zhong, and W.Y. Ching: Ab-initio calculations for the neutral and charged O vacancy in sapphire. Phys. Rev. B 56, 7277 (1997).

    CAS  Article  Google Scholar 

  86. 86.

    K. Matsunaga, T. Tanaka, T. Yamamoto, and Y. Ikuhara: First principles calculations of intrinsic defects in Al2O3. Phys. Rev. B 68, 85110 (2003).

    Article  CAS  Google Scholar 

  87. 87.

    J. Carrasco, J.R.B. Gomes, and F. Illas: Theoretical study of bulk and surface oxygen and aluminum vacancies in a-Al2O3. Phys. Rev. B 69, 64116 (2004).

    Article  CAS  Google Scholar 

  88. 88.

    D. Liu, S.J. Clark, and J. Robertson: Oxygen vacancy levels and electron transport in Al2O3. Appl. Phys. Lett. 96, 32905 (2010).

    Article  CAS  Google Scholar 

  89. 89.

    J.R. Weber, A. Janotti, and C.G. Van de Walle: Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices. J. Appl. Phys. 109, 33715 (2011).

    Article  CAS  Google Scholar 

  90. 90.

    M. Choi, A. Janotti, and C. Van de Walle: Native point defects and dangling bonds in a-Al2O3. J. Appl. Phys. 113, 44501 (2013).

    Article  CAS  Google Scholar 

  91. 91.

    J. Kang, E-C. Lee, K.J. Chang, and Y-G. Jin: H-related defect complexes in HfO2: A model for positive fixed charge defects. Appl. Phys. Lett. 84, 3894 (2004).

    CAS  Article  Google Scholar 

  92. 92.

    J.L. Gavartin, D. Munoz Ramo, A.L. Shluger, G. Bersuker, and B.H. Lee: Negative oxygen vacancies in HfO2 as charge traps in high-k stacks. Appl. Phys. Lett. 89, 82908 (2006).

    Article  CAS  Google Scholar 

  93. 93.

    K. Xiong, J. Robertson, M.C. Gibson, and S.J. Clark: Defect energy levels in HfO2 high-dielectric-constant gate oxide. Appl. Phys. Lett. 87, 183505 (2005).

    Article  CAS  Google Scholar 

  94. 94.

    Y.P. Feng, A.T.L. Lim, and M.F. Li: Negative-U property of oxygen vacancy in cubic HfO2. Appl. Phys. Lett. 67, 62105 (2005).

    Article  CAS  Google Scholar 

  95. 95.

    R. Gillen, J. Robertson, and S.J. Clark: Electron spin resonance signature of the oxygen vacancy in HfO2. Appl. Phys. Lett. 101, 102904 (2012).

    Article  CAS  Google Scholar 

  96. 96.

    D.M. Ramo, A.L. Shluger, J.L. Gavartin, and G. Bersuker: Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2. Phys. Rev. Lett. 99, 155504 (2007).

    Article  CAS  Google Scholar 

  97. 97.

    D. Ramo, J.L. Gavartin, A.L. Shluger, and G. Bersuker: Spectroscopic properties of oxygen vacancies in monoclinic HfO2 calculated with periodic and embedded cluster density functional theory. Phys. Rev. B 75, 205336 (2007).

    Article  CAS  Google Scholar 

  98. 98.

    D.M. Ramo, P.V. Sushko, J.L. Gavartin, and A.L. Shluger: Oxygen vacancies in cubic ZrO2 nanocrystals studied by an ab initio embedded cluster method. Phys. Rev. B 78, 235432 (2008).

    Article  CAS  Google Scholar 

  99. 99.

    T.J. Chen and C.L. Kuo: First principles study of the oxygen vacancy formation and the induced defect states in hafnium silicates. J. Appl. Phys. 111, 74106 (2012).

    Article  CAS  Google Scholar 

  100. 100.

    A.S. Foster, V.B. Sulimov, F. Lopez Gejo, A.L. Shluger, and R.M. Nieminen: Structure and electrical levels of point defects in monoclinic zirconia. Phys. Rev. B 64, 224108 (2001).

    Article  CAS  Google Scholar 

  101. 101.

    J.X. Zheng, G. Ceder, T. Maxisch, W.K. Chim, and W.K. Choi: First-principles study of native point defects in hafnia and zirconia. Phys. Rev. B 75, 104112 (2007).

    Article  CAS  Google Scholar 

  102. 102.

    J. Robertson, K. Xiong, and B. Falabretti: Point defects in ZrO2 high-k gate oxide. IEEE Trans. Dev. Mater. Reliab. 5, 84 (2005).

    CAS  Article  Google Scholar 

  103. 103.

    C.R.A. Catlow, R. James, W.C. Mackrodt, and R.F. Stewart: Defects energetics in a-Al2O3 and rutile TiO2. Phys. Rev. B 25, 1006 (1982).

    CAS  Article  Google Scholar 

  104. 104.

    N. Yu and J. Woods Halley: Electronic structure of point defects in rutile TiO2. Phys. Rev. B 51, 4768 (1995).

    CAS  Article  Google Scholar 

  105. 105.

    S. Na-Phtattalung, M.F. Smith, K. Kim, M-H. Du, S-H. Wei, S.B. Zhang, and S. Limpijumnong: First-principles study of native defects in anatase TiO2. Phys. Rev. B 73, 125205 (2006).

    Article  CAS  Google Scholar 

  106. 106.

    M. Nolan, S.D. Elliott, J.S. Mulley, R.A. Bennett, M. Basham, and P. Mulheran: Electronic structure of point defects in controlled self-doping of the TiO2 (110) surface: Combined photoemission spectroscopy and density functional theory study. Phys. Rev. B 77, 235424 (2008).

    Article  CAS  Google Scholar 

  107. 107.

    R.H. French: Electronic band structure of Al2O3, with comparison to AlON and AlN. J. Amer. Ceram. Soc. 73, 477 (1990).

    CAS  Article  Google Scholar 

  108. 108.

    E. Bersch, S. Rangan, R.A. Bartynski, E. Garfunkel, and E. Vescovo: Band offsets of ultrathin high-k oxide films with Si. Phys. Rev. B 78, 85114 (2008).

    Article  CAS  Google Scholar 

  109. 109.

    K.H. Lee and J.H. Crawford Jr.: Electron centers in single crystal Al2O3. Phys. Rev. B 15, 4065 (1977).

    CAS  Article  Google Scholar 

  110. 110.

    B.D. Evans: Optical transmission in undoped crystalline a-Al2O3 grown by several techniques. J. Appl. Phys. 70, 3995 (1991).

    CAS  Article  Google Scholar 

  111. 111.

    H. Takeuchi, D. Ha, and T.J. King: Observation of bulk HfO2 defects by spectroscopic ellipsometry. J. Vac. Sci. Technol., A 22, 1337 (2004).

    CAS  Article  Google Scholar 

  112. 112.

    N.V. Nguyen, A.V. Davydov, D. Chandler-Horowitz, and M.M. Frank: Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon. Appl. Phys. Lett. 87, 192903 (2005).

    Article  CAS  Google Scholar 

  113. 113.

    J. Price, G. Bersuker, and P.S. Lysaght: Identification of interfacial defects in high-k gate stack films by spectroscopic ellipsometry. J. Vac. Sci. Technol., B 27, 310 (2009).

    CAS  Article  Google Scholar 

  114. 114.

    A. Stesmans and V.V. Afanas’ev: Si dangling-bond-defects at the interface of (100) Si with ultrathin layers of SiOx, Al2O3, and ZrO2. Appl. Phys. Lett. 80, 1957 (2002).

    CAS  Article  Google Scholar 

  115. 115.

    A. Stesmans and V.V. Afanas’ev: Si dangling-bond-type defects at the interface of (100) Si with ultrathin HfO2. Appl. Phys. Lett. 82, 4074 (2003).

    CAS  Article  Google Scholar 

  116. 116.

    A. Stesmans, V.V. Afanas’ev, F. Chen, and S.A. Campbell: Paramagnetic NO2 centers in thin ?-irradiated HfO2 layers on (100)Si revealed by electron spin resonance. Appl. Phys. Lett. 84, 4574 (2004).

    CAS  Article  Google Scholar 

  117. 117.

    A. Stesmans, K. Clemer, and V.V. Afanas’ev: P-associated defects in the high-k insulators HfO2 and ZrO2 revealed by electron spin resonance. Phys. Rev. B 77, 125241 (2008).

    Google Scholar 

  118. 118.

    B.G. Draeger and G.P. Summers: Defects in unirradiated a-Al2O3. Phys. Rev. B 19, 1172 (1979).

    CAS  Article  Google Scholar 

  119. 119.

    R.C. DuVarney, A.K. Garrison, J.R. Nilas, and M. Spaeth: Electron-nuclear double resonance of the F+ center in a-alumina. Phys. Rev. B 24, 3693 (1981).

    CAS  Article  Google Scholar 

  120. 120.

    M. Vilmay, D. Roy, F. Volpi, and J-M. Chaix: Characterization of low-k SiOCH dielectric for 45 nm technology and link between the dominant leakage path and the breakdown localization. Microelectron. Eng. 85, 2075 (2008).

    CAS  Article  Google Scholar 

  121. 121.

    J.M. Atkin, T.M. Shaw, E. Liniger, R.B. Laibowitz, and T.F. Heinz: The effect of voltage bias stress on temperature-dependent conduction properties of low-k dielectrics. IEEE International Reliability Physics Symposium, Anaheim, CA (IEEE, 2012); p. BD.1.1.

    Google Scholar 

  122. 122.

    M. Baklanov, L. Zhao, E. Van Besien, and M. Pantouvaki: Effect of porogen residue on electrical characteristics of ultra low-k material. Microelectron. Eng. 88, 990 (2011).

    CAS  Article  Google Scholar 

  123. 123.

    B. Bittel, P. Lenahan, and S. King: Ultraviolet radiation effects on paramagnetic defects in low-k dielectrics for ultralarge scale integrated circuit interconnects. Appl. Phys. Lett. 97, 63506 (2010).

    Article  CAS  Google Scholar 

  124. 124.

    H. Sinha, G. Antonelli, G. Jiang, Y. Nishi, and J. Shohet: Effects of vacuum ultraviolet radiation on deposited and ultraviolet-cured low-k porous organosilicate glass. J. Vac. Sci. Technol., A 29, 30602 (2011).

    Article  CAS  Google Scholar 

  125. 125.

    H. Ren, G. Jiang, G. Antonelli, Y. Nishi, and J. Shohet: The nature of the defects generated from plasma exposure in pristine and ultraviolet-cured low-k organosilicate glass. Appl. Phys. Lett. 98, 252902 (2011).

    Article  CAS  Google Scholar 

  126. 126.

    M. Nichols, H. Sinha, C. Wiltbank, G. Antonelli, Y. Nishi, and J. Shohet: Time-dependent dielectric breakdown of plasma-exposed porous organosilicate glass. Appl. Phys. Lett. 100, 112905 (2012).

    Article  CAS  Google Scholar 

  127. 127.

    H. Sinha, H. Ren, M.T. Nichols, J.L. Lauer, M. Tomoyasu, N.M. Russell, G. Jiang, G.A. Antonelli, N.C. Fuller, S.U. Engelmann, Q. Lin, V. Ryan, Y. Nishi, and J.L. Shohet: The effects of vacuum ultraviolet radiation on low-k dielectric films. J. Appl. Phys. 112, 111101 (2012).

    Article  CAS  Google Scholar 

  128. 128.

    S. Miyazaki: Photoemission study of energy-band alignments and gap state density distributions for high-k gate dielectrics. J. Vac. Sci. Technol., B 19, 2212 (2001).

    CAS  Article  Google Scholar 

  129. 129.

    N. Ikarashi, M. Miyamura, K. Masuzaki, and T. Tatsumi: Electron energy-loss spectroscopy analysis of the electronic structure of nitrided Hf silicate films. Appl. Phys. Lett. 84, 2672 (2004).

    Article  CAS  Google Scholar 

  130. 130.

    Y. Kamimuta, M. Koike, T. Ino, M. Suzuki, M. Koyama, Y. Tsunashima, and A. Nishiyama: Determination of band alignment of hafnium silicon oxynitride/silicon (HfSiON/Si) structures using electron spectroscopy. Jpn. J. Appl. Phys. 44, 1301 (2005).

    CAS  Article  Google Scholar 

  131. 131.

    M. Koike, T. Ino, Y. Kamimuta, M. Koyama, Y. Kamata, M. Suzuki, Y. Mitani, and A. Nishiyama: Dielectric properties of noncrystalline HfSiON. Phys. Rev. B 73, 125123 (2006).

    Article  CAS  Google Scholar 

  132. 132.

    H. Jin, S.K. Oh, H.J. Kang, and M.H. Cho: Band gap and band offsets for ultrathin (HfO2)x(SiO2)1-x dielectric films on Si (100). Appl. Phys. Lett. 89, 122901 (2006).

    Article  CAS  Google Scholar 

  133. 133.

    C.J. Yim, D.H. Ko, M.H. Jang, K.B. Chung, M.H. Cho, and H.T. Jeon: Change in band alignment of HfO2 films with annealing treatments. Appl. Phys. Lett. 92, 12922 (2008).

    Article  CAS  Google Scholar 

  134. 134.

    S. Swaminathan, Y. Sun, P. Pianetta, and P.C. McIntyre: Ultrathin ALD-Al2O3 layers for Ge (001) gate stacks: Local composition evolution and dielectric properties. J. Appl. Phys. 110, 94105 (2011).

    Article  CAS  Google Scholar 

  135. 135.

    S. King, M. French, M. Jaehnig, M. Kuhn, B. Boyanov, and B. French: X-ray photoelectron spectroscopy measurement of the Schottky barrier at the SiC(N)/Cu interface. J. Vac. Sci. Technol., B 29, 51207 (2011).

    Article  CAS  Google Scholar 

  136. 136.

    S. King, M. French, M. Jaehnig, M. Kunh, and B. French: X-ray photoelectron spectroscopy investigation of the Schottky barrier at low-k a-SiO(C):H/Cu interfaces. Appl. Phys. Lett. 99, 202903 (2011).

    Article  CAS  Google Scholar 

  137. 137.

    S.W. King, M. French, J. Bielefeld, M. Jaehnig, M. Kuhn, G. Xu, and B. French: Valence band offset at the amorphous hydrogenated boron nitride silicon (100) interface. Appl. Phys. Lett. 101, 42903 (2012).

    Article  CAS  Google Scholar 

  138. 138.

    S.W. King, B. French, and E. Mays: Detection of defect states in low-k dielectrics using reflection electron energy loss spectroscopy. J. Appl. Phys. 113, 44109 (2013).

    Article  CAS  Google Scholar 

  139. 139.

    F. Bart, M. Gautier, J. Duraud, and M. Henriot: (01-10) a-quartz: A LEED, XANES and ELS study. Surf. Sci. 274, 317 (1992).

    CAS  Article  Google Scholar 

  140. 140.

    F. Bart, M. Gautier, F. Jollet, and J. Duraud: Electronic structure of the (0001) and (10-10) quartz surfaces and of their defects as observed by reflection electron energy loss spectroscopy (REELS). Surf. Sci. 306, 342 (1994).

    CAS  Article  Google Scholar 

  141. 141.

    P. Poveda and A. Glachant: Energy gap-determination of a carbon contaminated thermal silicon oxide thin film using reflection electron energy loss spectroscopy. J. Non-Cryst. Solids 216, 83 (1997).

    CAS  Article  Google Scholar 

  142. 142.

    P. Poveda and A. Glachant: Low energy electron-beam-enhanced formation of ultrathin insulating silicon oxynitride layers on Si(100) at moderate temperatures: In situ determination of the band gap energy using electron energy loss spectroscopy. Surf. Sci. 323, 258 (1995).

    CAS  Article  Google Scholar 

  143. 143.

    C. Morant, A. Fernandez, A.R. Gonzales-Elipe, L. Soriano, A. Stampfl, A.M. Bradshaw, and J.M. Sanz: Electronic structure of stoichiometric Ar+-bombarded ZrO2 determined by resonant photoemission. Phys. Rev. B 52, 11711 (1995).

    CAS  Article  Google Scholar 

  144. 144.

    M.A. Schildbach and A.V. Hamza: Sapphire (11-20) surface: Structure and laser-induced desorption of aluminum. Phys. Rev. B 45, 6197 (1992).

    CAS  Article  Google Scholar 

  145. 145.

    J. Olivier and R. Poirier: Electronic structure of Al2O3 from electron energy loss spectroscopy. Surf. Sci. 105, 347 (1981).

    CAS  Article  Google Scholar 

  146. 146.

    M. Gautier, J.P. Duraud, L. Pham Van, and M.J. Guittet: Modifications of a-Al2O3 (0001) surfaces induced by thermal treatments or ion bombardment. Surf. Sci. 250, 71 (1991).

    CAS  Article  Google Scholar 

  147. 147.

    W.J. Gignac, R. Williams, and S. Kowalczyk: Valence-and conduction-band structure of the sapphire (1-102) surface. Phys. Rev. B 32, 1237 (1985).

    CAS  Article  Google Scholar 

  148. 148.

    M-C. Wu, C.M. Truong, and D.W. Goodman: Electron-energy-loss-spectroscopy studies of thermally generated defects in pure and lithium-doped MgO(100) films on Mo(100). Phys. Rev. B 46, 12688 (1992).

    CAS  Article  Google Scholar 

  149. 149.

    S. King and J. Gradner: Intrinsic stress fracture energy measurements for PECVD thin films in the SiOxCyNz:H system. Microelectron. Reliab. 49, 721 (2009).

    CAS  Article  Google Scholar 

  150. 150.

    S. King, D. Jacob, D. Vanleuven, B. Colvin, J. Kelly, M. French, J. Bielefeld, D. Dutta, M. Liu, and D. Gidley: Film property requirements for hermetic low-k a-SiOxCyNz:H dielectric barriers. ECS J. Solid State Sci. Technol. 1, N115 (2012).

    CAS  Article  Google Scholar 

  151. 151.

    S. King, R. Chu, G. Xu, and J. Huening: Intrinsic stress effect on fracture toughness of plasma enhanced chemical vapor deposited SiNx:H films. Thin Solid Films 518, 4898 (2010).

    CAS  Article  Google Scholar 

  152. 152.

    E. Andideh, M. Lerner, G. Palmrose, S. El-Mansy, T. Scherban, G. Xu, and J. Blaine: Compositional effects on electrical and mechanical properties in carbon-doped oxide dielectric films: Application of Fourier-transform infrared spectroscopy. J. Vac. Sci. Technol., B 22, 196 (2004).

    CAS  Article  Google Scholar 

  153. 153.

    V. Jousseaume, A. Zenasni, L. Favennec, G. Gerbaud, M. Bardet, J.P. Simon, and A. Humbert: Comparison between e-beam and ultraviolet curing to perform porous a-SiOC: H. J. Electrochem. Soc. 154, G103 (2007).

    CAS  Article  Google Scholar 

  154. 154.

    S. Bailey, E. Mays, D.J. Michalak, R. Chebiam, S. King, and R. Sooryakumar: Mechanical properties of high porosity low-k dielectric nano-films determined by Brillouin light scattering. J. Phys. D: Appl. Phys. 46, 45308 (2013).

    Article  CAS  Google Scholar 

  155. 155.

    V. Miikkulainen, M. Leskela, M. Ritala, and R. Puurunen: Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 113, 21301 (2013).

    Article  CAS  Google Scholar 

  156. 156.

    H. Kim, H.B.R. Lee, and W.J. Maeng: Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517, 2563 (2009).

    CAS  Article  Google Scholar 

  157. 157.

    C.J. Powell and A. Jablonski: Nist Electron Effective-Attenuation-Length Database, Version 1.3 (SRD 82), (NIST, Gaithersburg, MD, 2011).

    Google Scholar 

  158. 158.

    W.M. Haynes, ed.: Crc Handbook of Physics and Chemistry, 93rd ed., W.M. Haynes (CRC Press, Boca Raton, FL, 2012).

    Google Scholar 

  159. 159.

    A. Zangwill: Physics at Surfaces (Cambridge University Press, New York, 1988).

    Google Scholar 

  160. 160.

    A. Jablonski and C.J. Powell: The electron attenuation length revisited. Surf. Sci. Rep. 47, 33 (2002).

    CAS  Article  Google Scholar 

  161. 161.

    C. Pantano and T. Madey: Electron beam damage in Auger electron spectroscopy. Appl. Surf. Sci. 7, 115 (1981).

    CAS  Article  Google Scholar 

  162. 162.

    R. Zallen: The Physics of Amorphous Solids (Wiley-Interscience, New York, 1983).

    Google Scholar 

  163. 163.

    T. Mok and S. O’Leary: The dependence of the Tauc and Cody optical gaps associated with hydrogenated amorphous silicon on film thickness: αI experimental limitations and the impact of curvature in the Tauc and Cody plots. J. Appl. Phys. 102, 113525 (2007).

    Article  CAS  Google Scholar 

  164. 164.

    Z. Weinberg, G. Rubloff, and E. Bassous: Transmission, photoconductivity, and the experimental band gap of thermally gown SiO2 films. Phys. Rev. B 19, 3107 (1979)

    CAS  Article  Google Scholar 

  165. 165.

    T. DiStefano and D. Eastman: The band edge of amorphous SiO2 by photoinjection and photoconductance measurements. Solid State Commun. 9, 2259 (1971).

    CAS  Article  Google Scholar 

  166. 166.

    E. O’Reilly and J. Robertson: Theory of defects in vitreous silicon dioxide. Phys. Rev. B 27, 3780 (1983).

    Article  Google Scholar 

  167. 167.

    A. Rudenko, F. Keil, M. Katsnelson, and A. Lichtenstein: Interfacial interactions between local defects in amorphous SiO2 and supported graphene. Phys. Rev. B 84, 85438 (2011).

    Article  CAS  Google Scholar 

  168. 168.

    E.K. Chang, M. Rohlfing, and S.G. Louie: Excitons and optical properties of a-quartz. Phys. Rev. Lett. 85, 2613 (2000).

    CAS  Article  Google Scholar 

  169. 169.

    L. Skuja, K. Kajihara, Y. Ikuta, M. Hirano, and H. Hosono: Urbach absorption edge of silica: Reduction of glassy disorder by fluorine doping. J. Non-Cryst. Solids 345–346, 328 (2004).

    Article  CAS  Google Scholar 

  170. 170.

    K. Saito and A.J. Ikushima: Absorption edge in silica glass. Phys. Rev. B 62, 8584 (2000).

    CAS  Article  Google Scholar 

  171. 171.

    S.C. Cheng, S.L. Schiefelbein, L.A. Moore, M. Pierson-Stull, C.M. Smith, and S. Sen: Use of EELS to study the absorption edge of fused silica. J. Non-Cryst. Solids 352, 3140 (2006).

    CAS  Article  Google Scholar 

  172. 172.

    B. Sadigh, P. Erhart, D. Aberg, A. Trave, E. Schwegler, and J. Bude: First-principles calculations of the Urbach tail in the optical absorption spectra of silica glass. Phys. Rev. Lett. 106, 027401 (2011).

    CAS  Article  Google Scholar 

  173. 173.

    D.J. Dunstan: Evidence for a common origin of the Urbach tails in amorphous and crystalline semiconductors. J. Phys. C: Solid State Phys. 30, L419 (1982).

    Article  Google Scholar 

  174. 174.

    D.A. Drabold, Y. Li, B. Cai, and M. Zhang: Urbach tails of amorphous silicon. Phys. Rev. B 83, 045201 (2011).

    Article  CAS  Google Scholar 

  175. 175.

    I.A. Vainshtein, A.F. Zatsepin, V.S. Kortov, and V. Yu Shchapova: The urbach rule for the PbO–SiO2 Glasses. Fizika Tverdogo Tela 42, 224 (2000).

    Google Scholar 

  176. 176.

    Y. Pan, F. Inam, M. Zhang, and D.A. Drabold: Atomistic origin of Urbach tails in amorphous silicon. Phys. Rev. Lett. 100, 206403 (2008).

    CAS  Article  Google Scholar 

  177. 177.

    A. Alkauskas, P. Broqvist, and A. Pasquarello: Alignment of defect energy levels at SiSiO2 interface from hybrid density functional calculations. AIP Conference Proceedings, Vol. 1199 2010; p. 79.

    Article  CAS  Google Scholar 

  178. 178.

    M. Tamaoki, K. Nishiki, A. Shimazaki, Y. Sasaki, and S. Yanagi: The effect of airborne contaminants in the cleanroom for ULSI manufacturing process. IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, Cambridge, MA (IEEE, 1995); p. 322.

    Google Scholar 

  179. 179.

    U. Zammit, F. Gasparrini, M. Marinelli, R. Pizzoferrato, A. Agostini, and F. Mercuri: Ion dose effect in subgap absorption spectra of defects in ion implanted GaAs and Si. J. Appl. Phys. 70, 7060 (1991).

    CAS  Article  Google Scholar 

  180. 180.

    S.T. Sundari: Optical absorption in Ar+ irradiated silicon studied through spectroscopic ellipsometry. Nucl. Instrum. Methods Phys. Res., Sect. B 215, 157 (2004).

    Article  CAS  Google Scholar 

  181. 181.

    G.P. Lopinski and J.S. Lannin: High resolution electron energy loss spectroscopy: A new probe of subgap absorption in amorphous solids. Appl. Phys. Lett. 69, 2400 (1996).

    CAS  Article  Google Scholar 

  182. 182.

    M. Worsley, S. Bent, N. Fuller, T. Tai, J. Doyle, M. Rothwell, and T. Dalton: Effect of radical species density and ion bombardment during ashing of extreme ultralow-k interlevel dielectric materials. J. Appl. Phys. 101, 13305 (2007).

    Article  CAS  Google Scholar 

  183. 183.

    J. Bao, H. Shi, H. Huang, P. Ho, M. Goodner, M. Moinpour, and G. Kloster: Mechanistic study of plasma damage of low k dielectric surfaces. J. Vac. Sci. Technol., B 26, 219 (2008).

    CAS  Article  Google Scholar 

  184. 184.

    H. Yamamoto, K. Asano, K. Ishikawa, M. Sekine, H. Hayashi, I. Sakai, T. Ohiwa, K. Takeda, H. Kondo, and M. Hori: Chemical bond modification in porous SiOCH films by H2 and H2/N2 plasmas investigated by in situ infrared reflection absorption spectroscopy. J. Appl. Phys. 110, 123301 (2011).

    Article  CAS  Google Scholar 

  185. 185.

    D. Tahir, H.L. Kwon, H.C. Shin, S.K. Oh, H.J. Kang, S. Heo, J.G. Chung, J.C. Lee, and S. Tougaard: Electronic and optical properties of Al2O3/SiO2 thin films grown on Si substrate. J. Phys. D: Appl. Phys. 43, 255301 (2010).

    Article  CAS  Google Scholar 

  186. 186.

    R. Degraeve, M. Cho, B. Govoreanu, B. Kaczer, M.B. Zahid, J. Van Houdt, M. Jurczak, and G. Groeseneken: Trap spectroscopy by charge injection and sensing (TSCIS): A quantitative electrical technique for studying defects in dielectric stacks. IEEE Electron Devices Meeting, 2008. DOI: 10.1109/IEDM.2008.4796812

    Google Scholar 

  187. 187.

    M.L. Huang, Y.C. Chang, Y.H. Chang, T.D. Lin, J. Kwo, and M. Hong: Energy-band parameters of atomic layer deposited Al2O3 and HfO2 on InxGa1-xAs. Appl. Phys. Lett. 94, 052106 (2009).

    Article  CAS  Google Scholar 

  188. 188.

    S. Miyazaki: Characterization of high-k gate dielectric/silicon interfaces. Appl. Surf. Sci. 190, 66 (2002).

    CAS  Article  Google Scholar 

  189. 189.

    I. Geppert, M. Eizenberg, A. Ali, and S. Datta: Band offsets determination and interfacial chemical properties of the Al2O3/GaSb system. Appl. Phys. Lett. 97, 162109 (2010).

    Article  CAS  Google Scholar 

  190. 190.

    M.A. Henderson, W.S. Epling, C.H.F. Peden, and C.L. Perkins: Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2(110). J. Phys. Chem. B 107, 534 (2003).

    CAS  Article  Google Scholar 

  191. 191.

    C. Di Valentin and G. Pacchioni: Electronic structure of defect states in hydroxylated and reduced rutile TiO2110Surfaces. Phys. Rev. Lett. 97, 166803 (2006).

    Article  CAS  Google Scholar 

  192. 192.

    M. Landmann, E. Rauls, and W.G. Schmidt: The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condens. Matter 24, 195503 (2012).

    CAS  Article  Google Scholar 

  193. 193.

    R.H. French, S.J. Glass, F.S. Ohuchi, Y.N. Xu, and W.Y. Ching: Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys. Rev. B 49, 5133 (1994).

    CAS  Article  Google Scholar 

  194. 194.

    H. Jin, S.K. Oh, H.J. Kang, and S. Tougaard: Electronic properties of ultrathin HfO2, Al2O3, and Hf–Al–O dielectric films on Si(100) studied by quantitative analysis of reflection electron energy loss spectra. J. Appl. Phys. 100, 083713 (2006).

    Article  CAS  Google Scholar 

  195. 195.

    M.H. Jang, K.S. Jeong, K.B. Chung, J.W. Lee, M.H. Lee, and M.H. Cho: Effect of nitrogen incorporation and oxygen vacancy on electronic structure and the absence of a gap state in HfSiO films. Surf. Sci. 606, L64 (2012).

    CAS  Article  Google Scholar 

  196. 196.

    K. Xiong and J. Robertson: Point defects in HfO2 high K gate oxide. Microelectronic Eng. 80, 408 (2005).

    CAS  Article  Google Scholar 

  197. 197.

    A.S. Foster, F. Lopez Gejo, A.L. Shluger, and R.M. Nieminen: Vacancy and interstitial defects in hafnia. Phys. Rev. B 65, 174117 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Address all correspondence to this author.

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

French, B.L., King, S.W. Detection of surface electronic defect states in low and high-k dielectrics using reflection electron energy loss spectroscopy. Journal of Materials Research 28, 2771–2784 (2013). https://doi.org/10.1557/jmr.2013.274

Download citation