Skip to main content
Log in

Routes to self-assembly of nanorods

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Self-assembled nanostructures often exhibit unique properties that are distinct from those of bulk materials. During the past decade, significant progress has been made in the assembly of nanorods and understanding some of the self-directing assembly mechanisms, particularly related to gold nanorods. Nonetheless, methods that can be scaled up to large areas for device-scale applications are yet to be established. This review describes various routes that are being actively pursued to achieve assembly of nanorods. Self-assembly methods that utilize external forces such as electric field or gravitational forces are reviewed. Additionally, self-assembly schemes using chemical and biomolecule linkers are presented. Other important routes, such as template assisted assembly, Langmuir-Blodgett, and nanorod assembly methods carried out in solution phase are also discussed. The latter includes recently reported approaches to produce superstructured particles through self-assembly. Solvent evaporation and drying can also strongly contribute to the assembly of nanostructures. The final section presents self-assembly routes that primarily exploit the drying kinetics of solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Y. Xia and P. Yang: Chemistry and physics of nanowires. Adv. Mater. 15, 351 (2003).

    Article  CAS  Google Scholar 

  2. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353 (2003).

    Article  CAS  Google Scholar 

  3. R.H. Baughman, A.A. Zakhidov, and W.A. de Heer: Carbon nanotubes-the route towards applications. Science 292, 787 (2002).

    Article  Google Scholar 

  4. Z. Yao, C.L. Kane, and C. Dekker: High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84, 2941 (2000).

    Article  CAS  Google Scholar 

  5. B. Sun and H. Sirringhaus: Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 5, 2408 (2005).

    Article  CAS  Google Scholar 

  6. J. Hu, L-S. Li, W. Yang, L. Manna, L-W. Wang, and A.P. Alivisatos: Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060 (2001).

    Article  CAS  Google Scholar 

  7. I. Gonzalez-Valls and M. Lira-Cantu: Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review. Energy Environ. Sci. 2, 19 (2009).

    Article  CAS  Google Scholar 

  8. K. Matsui, T. Kyotanni, and A. Tomita: Hydrothermal synthesis of single-crystal Ni(OH)2 nanorods in a carbon-coated anodic alumina film. Adv. Mater. 14, 1216 (2002).

    Article  CAS  Google Scholar 

  9. L. Shi, C. Pei, Y. Xu, and Q. Li: Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Am. Chem. Soc. 133, 10328 (2011).

    Article  CAS  Google Scholar 

  10. A.J. Wooten, D.J. Werder, D.J. Williams, J.L. Casson, and J.A. Hollingsworth: Solution-liquid-solid growth of ternary Cu-In-Se semiconductor nanowires from multiple and single-source precursors. J. Am. Chem. Soc. 131, 16177 (2009).

    Article  CAS  Google Scholar 

  11. H. Peng, C. Xie, D.T. Schoen, K. Mcllwrath, X.F. Zhang, and Y. Cui: Ordered vacancy compounds and nanotube formation in CuInSe2-CdS core-shell nanowires. Nano Lett. 7, 3734 (2007).

    Article  CAS  Google Scholar 

  12. C. Steinhagen, V.A. Akhavan, B.W. Goodfellow, M.G. Panthani, J.T. Harris, V.C. Holmberg, and B.A. Korgel: Solution-liquid-solid synthesis of CuInSe2 nanowires and their implementation in photovoltaic devices. ACS Appl. Mater. Interfaces 3, 1781 (2011).

    Article  CAS  Google Scholar 

  13. X. Wang and Y. Li: Selected-control hydrothermal synthesis of a- and ß-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880 (2002).

    Article  CAS  Google Scholar 

  14. L. Whittaker, C. Jaye, Z. Fu, D.A. Fischer, and S. Banerjee: Depressed phase transition in solution-grown VO2 nanostructures. J. Am. Chem. Soc. 131, 8884 (2009).

    Article  CAS  Google Scholar 

  15. S.G. Kwon and T. Hyeon: Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res. 41, 1696 (2008).

    Article  CAS  Google Scholar 

  16. L. Manna, E.C. Scher, and A.P. Alivisatos: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700 (2000).

    Article  CAS  Google Scholar 

  17. D. Baranov, L. Manna, and A.G. Kanaras: Chemically induced self-assembly of spherical and anisotropic inorganic nanocrystals. J. Mater. Chem. 21, 16694 (2011).

    Article  CAS  Google Scholar 

  18. P.R. Sajanlal, T.S. Sreeprasad, A.K. Samal, and T. Pradeep: Anisotropic nanomaterials: Structure, growth, assembly, and functions. Nano Rev. 2, 5883 (2011).

    Article  CAS  Google Scholar 

  19. M. Grzelczak, J. Vermant, E.M. Furst, and L.M. Liz-Marzan: Directed self-assembly of nanoparticles. ACS Nano 4, 3591 (2010).

    Article  CAS  Google Scholar 

  20. K. Liu, N. Zhao, and E. Kumacheva: Self-assembly of inorganic nanorods. Chem. Soc. Rev. 40, 656 (2011).

    Article  CAS  Google Scholar 

  21. L-S. Li and A.P. Alivisatos: Origin and scaling of the permanent dipole moment in CdSe nanorods. Phys. Rev. Lett. 90, 97402–97411 (2003).

    Article  CAS  Google Scholar 

  22. K.M. Ryan, A. Mastroianni, K.A. Stancil, H. Liu, and A.P. Alivisatos: Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett. 6, 1479 (2006).

    Article  CAS  Google Scholar 

  23. S. Gupta, Q. Zhang, T. Emrick, and T.P. Russell: Self-corralling nanorods under an applied electric field. Nano Lett. 6, 2066 (2006).

    Article  CAS  Google Scholar 

  24. E. Saeedi, C. Marcheselli, A. Shum, and B.A. Parviz: Inertially assisted nanoscale self-assembly. Nanotechnology 21, 375604 (2010).

    Article  CAS  Google Scholar 

  25. S. Park, J-H. Lim, S-W. Chung, and C.A. Mirkin: Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303, 348 (2004).

    Article  CAS  Google Scholar 

  26. J-H. Lim, J.W. Ciszek, F. Huo, J-W. Jang, S. Hwang, and C.A. Mirkin: Actuation of self-assembled two-component rod like nanostructures. Nano Lett. 8, 4441 (2008).

    Article  CAS  Google Scholar 

  27. J.W. Ciszek, L. Huang, S. Tsonchev, Y.H. Wang, K.R. Shull, M.A. Ratner, G.C. Schatz, and C.A. Mirkin: Assembly of nanorods into designer superstructures: The role of templating, capillary forces, adhesion, and polymer hydration. ACS Nano 4, 259 (2010).

    Article  CAS  Google Scholar 

  28. B.D. Smith, D.J. Kirby, and C.D. Keating: Vertical arrays of anisotropic particles by gravity-driven self-assembly. Small 7, 781 (2011).

    Article  CAS  Google Scholar 

  29. C.J. Orendorf, P.L. Hankins, and C.J. Murphy: pH-triggered assembly of gold nanorods. Langmuir 21, 2022 (2005).

    Article  CAS  Google Scholar 

  30. D. Fava, M.A. Winnik, and E. Kumacheva: Photothermally-triggered self-assembly of gold nanorods. Chem. Commun. 2571 (2009).

    Google Scholar 

  31. K.G. Thomas, S. Barazzouk, B.I. Ipe, S.T.S. Joseph, and P.V. Kamat: Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J. Phys. Chem. B 108, 13066 (2004).

    Article  CAS  Google Scholar 

  32. W. Ni, R.A. Mosquera, J. Perez-Juste, and L.M. Liz-Marzan: Evidence for hydrogen-bonding-directed assembly of gold nanorods in aqueous solution. J. Phys. Chem. Lett. 1, 1181 (2010).

    Article  CAS  Google Scholar 

  33. S.T.S. Joseph, B.I. Ipe, P. Pramod, and K.G. Thomas: Gold nanorods to nanochains: Mechanistic investigations on their longitudinal assembly using a, ?-alkanedithiols and interplasmon coupling. J. Phys. Chem. B 110, 150 (2006).

    Article  CAS  Google Scholar 

  34. T.S. Sreeprasad, A.K. Samal, and T. Pradeep: One-, two-, and three-dimensional superstructures of gold nanorods induced by dimercaptosuccinic acid. Langmuir 24, 4589 (2008).

    Article  CAS  Google Scholar 

  35. G. Kawamura, Y. Yang, and M. Nogami: End-to-end assembly of CTAB-stabilized gold nanorods by citrate anions. J. Phys. Chem. C 112, 10632 (2008).

    Article  CAS  Google Scholar 

  36. P.R. Selvakannan, E. Dumas, F. Dumur, C. Pechoux, P. Beaunier, A. Etcheberry, F. Secheresse, H. Remita, and C.R. Mayer: Coordination chemistry approach for the end-to-end assembly of gold nanorods. J. Colloid Interface Sci. 349, 93 (2010).

    Article  CAS  Google Scholar 

  37. N. Zhao, K. Liu, J. Greener, Z. Nie, and E. Kumacheva: Close-packed superlattices of side-by-side assembled Au-CdSe nanorods. Nano Lett. 9, 3077 (2009).

    Article  CAS  Google Scholar 

  38. N. Zhao, J. Vickery, G. Guerin, J.I. Park, M.A. Winnik, and E. Kumacheva: Self-assembly of single-tip metal-semiconductor nanorods in selective solvents. Angew. Chem. Int. Ed. 50, 4606 (2011).

    Article  CAS  Google Scholar 

  39. Y. Nagaoka, T. Wang, J. Lynch, D. LaMontagne, and Y.C. Cao: Binary assembly of colloidal semiconductor nanorods with spherical metal nanoparticles. Small 8, 843 (2012).

    Article  CAS  Google Scholar 

  40. C-C. Kang, C-W. Lai, H-C. Peng, J-J. Shyue, and P-T. Chou: 2D self-bundled CdS nanorods with micrometer dimension in the absence of an external directing process. ACS Nano 2, 750 (2008).

    Article  CAS  Google Scholar 

  41. C. Xue, O. Birel, M. Gao, S. Zhang, L. Dai, A. Urbas, and Q. Li: Perylene monolayer protected gold nanorods: Unique optical, electronic properties and self-assemblies. J. Phys. Chem. C 116, 10396 (2012).

    Article  CAS  Google Scholar 

  42. F. Kim, S. Kwan, J. Akana, and P. Yang: Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 123, 4360 (2001).

    Article  CAS  Google Scholar 

  43. D. Barano, A. Fiore, M.V. Huis, C. Giannini, A. Falqui, U. Lafont, H. Zandbergen, M. Zanella, R. Cingolani, and L. Manna: Assembly of colloidal semiconductor nanorods in solution by depletion attraction. Nano Lett. 10, 743 (2010).

    Article  CAS  Google Scholar 

  44. P. Melby, A. Prevost, D.A. Egolf, and J.S. Urbach: Depletion force in a bidisperse granular layer. Phys. Rev. E 76, 051307 (2007).

    Article  CAS  Google Scholar 

  45. F. Oosawa and S. Asakua: Surface tension of high-polymer solutions. J. Chem. Phys. 22, 1255 (1954).

    Article  Google Scholar 

  46. K. Ramasamy, X. Zhang, R.D. Bennett, and A. Gupta: Synthesis, photoconductivity and self-assembly of wurtzite phase Cu2CdxZn1-xSnS4 nanorods. RSC Adv. 3, 1186 (2013).

    Article  CAS  Google Scholar 

  47. J.Q. Zhung, H.M. Wu, Y.G. Yang, and Y.C. Cao: Controlling colloidal superparticle growth through solvophobic interactions. Angew. Chem. Int. Ed. 47, 2208 (2008).

    Article  CAS  Google Scholar 

  48. T. Wang, D. LaMontagne, J. Lynch, J. Zhuang, and Y.C. Cao: Colloidal superparticles from nanoparticles assembly. Chem. Soc. Rev. doi: 10.1039/c2cs35318k.

  49. J. Zhung, A.D. Shaller, J. Lynch, H. Wu, O. Chen, A.D.Q. Li, and Y.C. Cao: Cylindrical superparticles from semiconductor nanorods. J. Am. Chem. Soc. 131, 6084 (2009).

    Article  CAS  Google Scholar 

  50. T. Wang, J. Zhuang, J. Lynch, O. Chen, Z. Wang, X. Wang, D. LaMontagne, H. Wu, Z. Wang, and Y.C. Cao: Self-assembled colloidal superparticles from nanorods. Science 338, 358 (2012).

    Article  CAS  Google Scholar 

  51. E. Dujardin, L-B. Hsin, C.R.C. Wang, and S. Mann: DNA-driven self-assembly of gold nanorods. Chem. Commun.1264 (2001).

    Google Scholar 

  52. N.M. Green: Avidin. Adv. Protein Chem. 29, 85 (1975).

    Article  CAS  Google Scholar 

  53. K.K. Caswell, J.N. Wilson, U.H.F. Bunz, and C.J. Murphy: Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 125, 13914 (2003).

    Article  CAS  Google Scholar 

  54. J-Y. Chang, H. Wu, H. Chen, Y-C. Ling, and W. Tan: Oriented assembly of Au nanorods using biorecognition system. Chem. Commun.1092 (2005).

    Google Scholar 

  55. C. Wang, Y. Chen, T. Wang, Z. Ma, and Z. Su: Biorecognition-driven self-assembly of gold nanorods: A rapid and sensitive approach toward antibody sensing. Chem. Mater. 19, 5809 (2007).

    Article  CAS  Google Scholar 

  56. B. Pan, L. Ao, F. Gao, H. Tian, R. He, and D. Cui: End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology 16, 1776 (2005).

    Article  CAS  Google Scholar 

  57. A. Salant, E. Amitay-Sadovsky, and U. Banin: Directed self-assembly of gold-tipped CdSe nanorods. J. Am. Chem. Soc. 128, 10006 (2006).

    Article  CAS  Google Scholar 

  58. H. Nakashima, K. Furukawa, Y. Kashimura, and K. Torimitsu: Self-assembly of gold nanorods induced by intermolecular interactions of surface-anchored lipids. Langmuir 24, 5654 (2008).

    Article  CAS  Google Scholar 

  59. Y. Wang, Y.F. Li, J. Wang, Y. Sanga, and C.Z. Huang: End-to-end assembly of gold nanorods by means of oligonucleotide-mercury(II) molecular recognition. Chem. Commun. 46, 1332 (2010).

    Article  CAS  Google Scholar 

  60. D.A. Walker and V.K. Gupta: Reversible end-to-end assembly of gold nanorods using a disulfide-modified polypeptide. Nanotechnology 19, 435603 (2008).

    Article  CAS  Google Scholar 

  61. T. Jain, R. Roodbeen, N.E.A. Reeler, T. Vosch, K.J. Jensen, T. Bjørnholm, and K. Nørgaard: End-to-end assembly of gold nanorods via oligopeptide linking and surfactant control. J. Colloid Interface Sci. 376, 83 (2012).

    Article  CAS  Google Scholar 

  62. B. Nikoobakht, Z.L. Wang, and M.A. El-Sayed: Self-assembly of gold nanorods. J. Phys. Chem. B 104, 8635 (2000).

    Article  CAS  Google Scholar 

  63. L. Li, J. Walda, L. Manna, and A.P. Alivisatos: Semiconductor nanorod liquid crystals. Nano Lett. 2 (6), 557 (2002).

    Article  CAS  Google Scholar 

  64. L-S. Li and A.P. Alivisatos: Semiconductor nanorod liquid crystals and their assembly on a substrate. Adv. Mater. 15 (5), 408 (2003).

    Article  CAS  Google Scholar 

  65. Y. Li, X. Li, C. Yang, and Y. Li: Ligand-controlling synthesis and ordered assembly of ZnS nanorods and nanodots. J. Phys. Chem. B 108, 16002 (2004).

    Article  CAS  Google Scholar 

  66. D.V. Talapin, E.V. Shevchenko, C.B. Murray, A. Kornowski, S. Förster, and H. Weller: CdSe and CdSe/CdS nanorod solids. J. Am. Chem. Soc. 126, 12984 (2004).

    Article  CAS  Google Scholar 

  67. A. Ghezelbash, B. Koo, and B.A. Korgel: Self-assembled stripe patterns of CdS nanorods. Nano Lett. 6 (8), 1832 (2006).

    Article  CAS  Google Scholar 

  68. S. Ahmed and K.M. Ryan: Self-assembly of vertically aligned nanorod supercrystals using highly oriented pyrolytic graphite. Nano Lett. 7 (8), 2480 (2007).

    Article  CAS  Google Scholar 

  69. J. Wang, E. Khoo, P.S. Lee, and J. Ma: Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J. Phys. Chem. C 112, 14306 (2008).

    Article  CAS  Google Scholar 

  70. X. Zhang and T. Imae: Perpendicular superlattice growth of hydrophobic gold nanorods on patterned silicon substrates via evaporation-induced self-assembling. J. Phys. Chem. C 113, 5947 (2009).

    Article  CAS  Google Scholar 

  71. B. Pietrobon, M. McEachran, and V. Kitaev: Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods. ACS Nano 3 (1), 21 (2009).

    Article  CAS  Google Scholar 

  72. C. Nobile, L. Carbonel, A. Fiore, R. Cingolani, L. Manna, and R. Krahne: Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics. J. Phys. Condens. Matter 21, 264013 (2009).

    Article  CAS  Google Scholar 

  73. A. Singh, R.D. Gunning, A. Sanyala, and K.M. Ryan: Directing semiconductor nanorod assembly into 1D or 2D supercrystals by altering the surface charge. Chem. Commun. 46, 7193 (2010).

    Article  CAS  Google Scholar 

  74. L. Yi, A. Tang, M. Niu, W. Han, Y. Houb, and M. Gao: Synthesis and self-assembly of Cu1.94S-ZnS heterostructured nanorods. Cryst. Eng. Comm. 12, 4124 (2010).

    Article  CAS  Google Scholar 

  75. A. Sánchez-Iglesias, M. Grzelczak, J. Pérez-Juste, and L.M. Liz-Marzán. Binary self-assembly of gold nanowires with nanospheres and nanorods. Angew. Chem. Int. Ed. 49, 9985 (2010).

    Article  CAS  Google Scholar 

  76. Y. Xie, S. Guo, Y. Ji, C. Guo, X. Liu, Z. Chen, X. Wu, and Q. Liu: Self-assembly of gold nanorods into symmetric superlattices directed by OH-terminated hexa(ethylene glycol) alkanethiol. Langmuir 27, 11394 (2011).

    Article  CAS  Google Scholar 

  77. A.M. Hung, N.A. Konopliv, and J.N. Cha: Solvent-based assembly of CdSe nanorods in solution. Langmuir 27, 12322 (2011).

    Article  CAS  Google Scholar 

  78. K.C. Ng, I.B. Udagedara, I.D. Rukhlenko, Y. Chen, Y. Tang, M. Premaratne, and W. Cheng: Free-standing plasmonic-nanorod superlattice sheets. ACS Nano 6 (1), 925 (2012).

    Article  CAS  Google Scholar 

  79. A. Singh, R.D. Gunning, S. Ahmed, C.A. Barrett, N.J. English, J-A. Garate, and K.M. Ryan: Controlled semiconductor nanorod assembly from solution: influence of concentration, charge and solvent nature. J. Mater. Chem. 22, 1562 (2012).

    Article  CAS  Google Scholar 

  80. C. Querner, M.D. Fischbein, P.A. Heiney, and M. Drndic: Millimeter-scale assembly of CdSe nanorods into smectic superstructures by solvent drying kinetics. Adv. Mater. 20, 2308 (2008).

    Article  CAS  Google Scholar 

  81. M. Zanella, R. Gomes, M. Povia, C. Giannini, Y. Zhang, A. Riskin, M.V. Bael, Z. Hens, and L. Manna: Self-assembled multilayers of vertically aligned semiconductor nanorods on device-scale areas. Adv. Mater. 23, 2205 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation under Grant No. CHE-1012850.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramas amy, K., Gupta, A. Routes to self-assembly of nanorods. Journal of Materials Research 28, 1761–1776 (2013). https://doi.org/10.1557/jmr.2013.26

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.26

Navigation