Comparative study of nanoindentation on melt-spun ribbon and bulk metallic glass with Ni60Nb37B3 composition


This paper describes the mechanical properties under nanoindentation of a new glassy alloy with a nominal composition of Ni60Nb37B3, in the form of melt-spun ribbons and 1-mm-thick copper mold-cast sheets. The alloy composition was designed based on the synergy between the topological instability criterion and the difference in electronegativity among the elements. X-ray diffraction and scanning electron microscopy analyses confirmed that both ribbon and sheet samples possess totally amorphous structures with relatively high thermal stability (supercooled liquid region of about 60 K), as evaluated by differential scanning calorimetry (DSC). Nanoindentation tests revealed that the hardness of this alloy, about 15 GPa, is among the highest reported for metallic glasses. The elastic modulus of the cast sheet is higher and its hardness is similar to that of the ribbon. This correlates well with the different amounts of frozen-in free volume in both types of samples detected by DSC.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.


  1. 1.

    D.B. Miracle: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).

    CAS  Google Scholar 

  2. 2.

    H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2007).

    Google Scholar 

  3. 3.

    N. Chen, L. Martin, D.V. Luzguine-Luzgin, and A. Inoue: Role of alloying additions in glass formation and properties of bulk metallic glasses. Materials 3, 5320 (2010).

    CAS  Google Scholar 

  4. 4.

    Z.T. Wang, K.Y. Zeng, and Y. Li: The correlation between glass formation and hardness of the amorphous phase. Scr. Mater. 65, 747 (2011).

    CAS  Google Scholar 

  5. 5.

    M. Yan, S. Kohara, J.Q. Wang, K. Nogita, G.B. Schaffer, and M. Qian: The influence of topological structure on bulk glass formation in Al-based metallic glasses. Scr. Mater. 65, 755 (2011).

    CAS  Google Scholar 

  6. 6.

    F. Spaepen: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1977).

    CAS  Google Scholar 

  7. 7.

    C.A. Volkert, A. Donohue, and F. Spaepen: Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 083539 (2008).

    Google Scholar 

  8. 8.

    B.G. Yoo, K.W. Park, J.C. Lee, U. Ramamurty, and J. Jang: Role of free volume in strain softening of as-cast and annealed bulk metallic glass. J. Mater. Res. 24, 1405 (2009).

    CAS  Google Scholar 

  9. 9.

    W.J. Wright, R. Saha, and W.D. Nix: Deformation mechanisms of the Zr, Ti, Ni, Cu, Be, bulk metallic glass. Mater. Trans. 42, 642 (2001).

    CAS  Google Scholar 

  10. 10.

    C.A. Schuh and T.G. Nieh: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 64 (2004).

    Google Scholar 

  11. 11.

    C.A. Schuh, A.C. Lund, and T.G. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).

    CAS  Google Scholar 

  12. 12.

    G.P. Zhang, W. Wang, B. Zhang, J. Tan, and C.S. Liu: On rate-dependent serrated flow behavior in amorphous metals during nanoindentation. Scr. Mater. 52, 1147 (2005).

    CAS  Google Scholar 

  13. 13.

    W.H. Jiang, F.E. Pinkerton, and M. Atzmon: Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy. Acta Mater. 53, 3469 (2005).

    CAS  Google Scholar 

  14. 14.

    B.C. Wei, T.H. Zhang, W.H. Li, Y.F. Sun, Y. Yu, and Y.R. Wang: Serrated plastic flow during nanoindentation in Nd-based bulk metallic glasses. Intermetallics 12, 1239 (2004).

    CAS  Google Scholar 

  15. 15.

    W.H. Li, T.H. Zhang, D.M. Xing, B.C. Wei, Y.R. Wang, and Y.D. Dong: Instrumented indentation study of plastic deformation in bulk metallic glasses. J. Mater. Res. 21, 75 (2006).

    CAS  Google Scholar 

  16. 16.

    J.J. Kim, Y. Choi, S. Suresh, and A.S. Argon: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002).

    CAS  Google Scholar 

  17. 17.

    A. Concustell, J. Sort, G. Alcala, S. Mato, A. Gebert, J. Eckert, and M.D. Baro: Plastic deformation and mechanical softening of Pd40Cu30Ni10P20 bulk metallic glass during nanoindentation. J. Mater. Res. 20, 2719 (2005).

    CAS  Google Scholar 

  18. 18.

    F.S. Santos, J. Sort, J. Fornell, M.D. Baro, S. Suriñach, C. Bolfarini, W.J. Botta, and C.S. Kiminami: Mechanical behavior under nanoindentation of a new Ni-based glassy alloy produced by melt-spinning and copper mold casting. J. Non-Cryst. Solids 356, 2251 (2010).

    CAS  Google Scholar 

  19. 19.

    W. Peng, T. Zhang, Y. Liu, L. Li, and B. We: Critical serrated flow features during nanoindentation in La-based bulk metallic glasses. J. Uni. Sci. Technol. Beijing 14(1), 8 (2007).

    Google Scholar 

  20. 20.

    N. Van Steenberge, J. Sort, A. Concustell, J. Das, S. Scudino, S. Suriñach, J. Eckert, and M.D. Baró: Dynamic softening and indentation size effect in a Zr-based bulk glass-forming alloy. Scr. Mater. 56, 605 (2007).

    Google Scholar 

  21. 21.

    M.F. Ashby and A.L. Greer: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).

    CAS  Google Scholar 

  22. 22.

    A.L. Greer, A. Castellero, S.V. Madge, I.T. Walker, and J.R. Wilde: Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Mater. Sci. Eng., A 375–377, 1182 (2004).

    Google Scholar 

  23. 23.

    J.I. Jang, B.G. Yoo, and J.Y. Kim: Rate-dependent inhomogeneous-to-homogeneous transition of plastic flows during nanoindentation of bulk metallic glasses: Fact or artifact? Appl. Phys. Lett. 90, 211906 (2007).

    Google Scholar 

  24. 24.

    W.H. Li, B.C. Wei, T.H. Zhang, D.M. Xing, L.C. Zhang, and Y.R. Wang: Study of serrated flow and plastic deformation in metallic glasses through instrumented indentation. Intermetallics 15, 706 (2007).

    Google Scholar 

  25. 25.

    U. Ramamurty, S. Jana, Y. Kawamura, and K. Chattopadhyay: Hardness and plastic deformation in a bulk metallic glass. Acta Mater. 53, 705 (2005).

    CAS  Google Scholar 

  26. 26.

    P. Murali and U. Ramamurty: Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Mater. 53, 1467 (2005).

    CAS  Google Scholar 

  27. 27.

    M.F. de Oliveira, F.S. Pereira, C. Bolfarini, C.S. Kiminami, and W.J. Botta: Topological instability, average electronegativity difference and glass forming ability of amorphous alloys. Intermetallics 17, 183 (2009).

    Google Scholar 

  28. 28.

    C.S. Kiminami, R.D. Sá Lisboa, M.F. de Oliveira, C. Bolfarini, W.J. Botta: Topological instability as a criterion for design and selection of easy glass-former compositions in Cu-Zr based systems. Mater. Trans., JIM 48, 1739 (2007).

    CAS  Google Scholar 

  29. 29.

    F.S. Santos, C.S. Kiminami, C. Bolfarini, M.F. de Oliveira, and W.J. Botta: Evaluation of glass forming ability in the Ni–Nb–Zr alloy system by the topological instability (λ) criterion. J. Alloys Compd. 495, 316 (2010).

    Google Scholar 

  30. 30.

    W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    CAS  Google Scholar 

  31. 31.

    U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, and L. Schultz: Microstructure and thermal behavior of two-phase amorphous Ni-Nb-Y alloy. Scr. Mater. 25, 271 (2005).

    Google Scholar 

  32. 32.

    Z. Zhou, W.L. Johnson, and W.K. Rhim: Thermophysical properties of Ni–Nb and Ni–Nb–Sn bulk metallic glass-forming melts by containerless electrostatic levitation processing. J. Non-Cryst. Solids 337, 21 (2004).

    Google Scholar 

  33. 33.

    A. Leyland and A. Matthews: On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behavior. Wear 246, 1 (2000).

    CAS  Google Scholar 

  34. 34.

    C. Rebholz, A. Leyland, J.M. Schneider, A.A. Voevodin, and A. Matthews: Structure, hardness and mechanical properties of magnetron sputtered titanium aluminum boride films. Surf. Coat. Technol. 120–121, 412 (1999).

    Google Scholar 

  35. 35.

    J. Musil, F. Kunc, H. Zeman, and H. Poláková: Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surf. Coat. Technol. 154, 304 (2002).

    CAS  Google Scholar 

  36. 36.

    Y.T. Cheng and C.M. Cheng: Relationships between hardness, elastic modulus, and the work of indentation. Appl. Phys. Lett. 73, 614 (1998).

    CAS  Google Scholar 

  37. 37.

    E. Pellicer, S. Pané, K.M. Sivaraman, O. Ergeneman, S. Suriñach, M.D. Baró, B.J. Nelson, and J. Sort: Effects of the anion in glycine-containing electrolytes on the mechanical properties of electrodeposited Co-Ni films. Mater. Chem. Phys. 130, 1380 (2011).

    CAS  Google Scholar 

  38. 38.

    Z. Zhu, H. Zhang, D. Pan, W. Sun, and Z. Hu: Fabrication of binary Ni-Nb bulk metallic glass with high strength and compressive plasticity. Adv. Eng. Mater. 8, 953 (2006).

    CAS  Google Scholar 

  39. 39.

    H. Choi-Yim, D. Xu, and W.L. Johnson: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B, Fe, Cu) alloy systems. Appl. Phys. Lett. 82, 1030 (2003).

    CAS  Google Scholar 

  40. 40.

    D. Xu, G. Duan, W.L. Johnson, and C. Garland: Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater. 52, 3493 (2004).

    CAS  Google Scholar 

  41. 41.

    A.C. Fischer-Cripps: Nanoindentation, 3rd ed. (Springer-Verlag Inc., New York, 2002).

    Google Scholar 

  42. 42.

    J. Fornell, A. Concustell, S. Suriñach, W.H. Li, N. Cuadrado, A. Gebert, M.D. Baró, and J. Sort: Yielding and intrinsic plasticity of Ti–Zr–Ni–Cu–Be bulk metallic glass. Int. J. Plast. 25, 1540 (2009).

    CAS  Google Scholar 

Download references


This work was financially supported by CNPq and FAPESP (Brazil) and the MAT2011-27380-C02-01 Project of MINECO (Spain). MDB acknowledges partial financial support from an ICREA-Academia Award.

Author information



Corresponding author

Correspondence to Luis César Rodríguez Aliaga.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aliaga, L.C.R., Beringues, J.F., Suriñach, S. et al. Comparative study of nanoindentation on melt-spun ribbon and bulk metallic glass with Ni60Nb37B3 composition. Journal of Materials Research 28, 2740–2746 (2013).

Download citation