Heteroepitaxy of distorted rutile-structure WO2 and NbO2 thin films

Abstract

We present an experimental study on the epitaxy and orientational relationships of WO2 and NbO2 films on (0001) Al2O3, (111) MgAl2O4, and (111) MgO substrates, as well as WO2 on (111) SrTiO3. The higher symmetry of the substrate planes compared to the film planes leads to the formation of epitaxial structural variants, and they are related by the surface rotational symmetry elements of the substrates. WO2 and NbO2 crystallize in distorted versions of the rutile structure, and we discuss our findings in context of the rutile unit cell. Our results are applicable to other compounds that occur in (distorted) rutile structures. For the case of NbO2 thin films, we also demonstrate that they can be grown epitaxially on (1012) and (1010) Al2O3, lower symmetry surfaces; in these cases, surface symmetry does not induce the formation of epitaxial rotational variants, though domains related by glide symmetry are possible.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
TABLE I.

References

  1. 1.

    P.A.M. Hotsenpiller, G.A. Wilson, A. Roshko, J.B. Rothman, and G.S. Rohrer: Heteroepitaxial growth of TiO2 films by ion-beam sputter deposition. J. Cryst. Growth 166(1-4), 779 (1996).

    Article  Google Scholar 

  2. 2.

    S. Chen, M.G. Mason, H.J. Gysling, G.R. Pazpujalt, T.N. Blanton, T. Castro, K.M. Chen, C.P. Fictorie, W.L. Gladfelter, A. Franciosi, P.I. Cohen, and J.F. Evans: Ultrahigh-vacuum metalorganic chemical-vapor-deposition growth and in-situ characterization of epitaxial TiO2 films. J. Vac. Sci. Technol., A 11(5), 2419 (1993).

    CAS  Article  Google Scholar 

  3. 3.

    Y. Gao, S. Thevuthasan, D.E. McCready, and M. Engelhard: MOCVD growth and structure of Nb- and V-doped TiO2 films on sapphire. J. Cryst. Growth 212(1-2), 178 (2000).

    CAS  Article  Google Scholar 

  4. 4.

    C.P. Flynn and J.A. Eades: Structural variants in heteroepitaxial growth. Thin Solid Films 389(1-2), 116 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    M. Grundmann: Formation of epitaxial domains: Unified theory and survey of experimental results. Phys. Status Solidi B 248(4), 805 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Z.P. Wu, S. Yamamoto, A. Miyashita, Z.J. Zhang, K. Narumi, and H. Naramoto: Single-crystalline epitaxy and twinned structure of vanadium dioxide thin film on (0001) sapphire. J. Phys. Condens. Matter 10(48), L765 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    H. Zhou, M.F. Chisholm, T.H. Yang, S.J. Pennycook, and J. Narayan: Role of interfacial transition layers in VO2/Al2O3 heterostructures. J. Appl. Phys. 110(7), 073515 (2011).

    Article  Google Scholar 

  8. 8.

    F.J. Wong, Y. Zhou, and S. Ramanathan: Epitaxial variants of VO2 thin films on complex oxide single crystal substrates with 3m surface symmetry. J. Cryst. Growth 364, 74 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Z. Yang and S. Ramanathan: Direct measurement of compositional complexity-induced electronic inhomogeneity in VO2 thin films grown on gate dielectrics. Appl. Phys. Lett. 98(19), 192113 (2011).

    Article  Google Scholar 

  10. 10.

    R. Engel-Herbert, B. Jalan, J. Cagnon, and S. Stemmer: Microstructure of epitaxial rutile TiO2 films grown by molecular beam epitaxy on r-plane Al2O3. J. Cryst. Growth 312(1), 149 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    J.E. Dominguez, L. Fu, and X.Q. Pan: Epitaxial nanocrystalline tin dioxide thin films grown on (0001) sapphire by femtosecond pulsed laser deposition. Appl. Phys. Lett. 79(5), 614 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    X.Q. Pan, L. Fu, and J.E. Dominguez: Structure-property relationship of nanocrystalline tin dioxide thin films grown on (1012) sapphire. J. Appl. Phys. 89(11), 6056 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Zhao, J.H. Lee, Y.H. Zhu, M. Nazari, C.H. Chen, H.Y. Wang, A. Bernussi, M. Holtz, and Z.Y. Fan: Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates. J. Appl. Phys. 111(5), 053533 (2012).

    Article  Google Scholar 

  14. 14.

    T.H. Yang, R. Aggarwal, A. Gupta, H.H. Zhou, R.J. Narayan, and J. Narayan: Semiconductor-metal transition characteristics of VO2 thin films grown on c- and r-sapphire substrates. J. Appl. Phys. 107(5), 053514 (2010).

    Article  Google Scholar 

  15. 15.

    T. Kawakubo and T. Nakagawa: Phase transition in VO2. J. Phys. Soc. Jpn. 19(4), 517 (1964).

    CAS  Article  Google Scholar 

  16. 16.

    J.B. Goodenough: Direct cation-cation interactions in several oxides. Phys. Rev. 117(6), 1442 (1960).

    CAS  Article  Google Scholar 

  17. 17.

    G. Andersson: Studies on vanadium oxides. 2. The crystal structure of vanadium dioxide. Acta Chem. Scand. 10(4), 623 (1956).

    CAS  Article  Google Scholar 

  18. 18.

    D.J. Palmer and P.G. Dickens: Tungsten dioxide - structure refinement by powder neutron-diffraction. Acta Crystallogr., Sect. B: Struct. Sci. 35, 2199 (1979). (PDF 01-071-0614).

    Article  Google Scholar 

  19. 19.

    H.A. Wriedt: The O-W (oxygen-tungsten) system. Bulletin of Alloy Phase Diagrams 10, 368 (1989).

    CAS  Article  Google Scholar 

  20. 20.

    R.J. Colton and J.W. Rabalais: Electronic-structure of tungsten and some of its borides, carbides, nitrides, and oxides by x-ray electron spectroscopy. Inorg. Chem. 15(1), 236 (1976).

    CAS  Article  Google Scholar 

  21. 21.

    M. Katoh and Y. Takeda: Chemical state analysis of tungsten and tungsten oxides using an electron probe microanalyzer. Jpn. J. Appl. Phys. 43(10), 7292 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    O.Y. Khyzhun: XPS, XES and XAS studies of the electronic structure of tungsten oxides. J. Alloys Compd. 305(1-2), 1 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    D.D. Sarma and C.N.R. Rao: XPES studies of oxides of 2nd-row and 3rd-row transition-metals including rare-earths. J. Electron Spectrosc. 20(1-2), 25 (1980).

    CAS  Article  Google Scholar 

  24. 24.

    F.H. Jones, R.G. Egdell, A. Brown, and F.R. Wondre: Surface structure and spectroscopy of WO2(012). Surf. Sci. 374(1-3), 80 (1997).

    CAS  Article  Google Scholar 

  25. 25.

    A. Gulino, S. Parker, F.H. Jones, and R.G. Egdell: Influence of metal-metal bonds on electron spectra of MoO2 and WO2. J. Chem. Soc., Faraday Trans. 92(12), 2137 (1996).

    CAS  Article  Google Scholar 

  26. 26.

    T. Sakata, K. Sakata, and I. Nishida: Study of phase transition in NbO2. Phys. Status Solidi B 20(2), K155 (1967).

    CAS  Article  Google Scholar 

  27. 27.

    A.A. Bolzan, C. Fong, B.J. Kennedy, and C.J. Howard: A powder neutron-diffraction study of semiconducting and metallic niobium dioxide. J. Solid State Chem. 113(1), 9 (1994). (PDF 01-082-1141).

    CAS  Article  Google Scholar 

  28. 28.

    J.R. Gannon and R.J.D. Tilley: Microstructure of slightly substoichiometric NbO2. J. Solid State Chem. 20(4), 331 (1977).

    CAS  Article  Google Scholar 

  29. 29.

    J. Vanlanduyt, R. Gevers, and S. Amelinckx: Electron microscopic study of twins, anti-phase boundaries, and dislocations in thin films of rutile. Phys. Status Solidi B 7(1), 307 (1964).

    Article  Google Scholar 

  30. 30.

    J.K. Burdett: Electronic control of the geometry of rutile and related structures. Inorg. Chem. 24(14), 2244 (1985).

    CAS  Article  Google Scholar 

  31. 31.

    H.L.M. Chang, H. You, Y. Gao, J. Guo, C.M. Foster, R.P. Chiarello, T.J. Zhang, and D.J. Lam: Structural properties of epitaxial TiO2 films grown on sapphire (1110) by MOCVD. J. Mater. Res. 7(9), 2495 (1992).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was funded by AFOSR Grant No. FA9550-12-1-0189. Sputter deposition and x-ray photoelectron spectroscopy measurements were performed at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF Grant No. ECS-0335765. CNS is part of Harvard University. The XRD 2θ−θ scans were performed on a facility instrument at the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under Grant No. DMR-08-19762.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Franklin J. Wong.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wong, F.J., Ramanathan, S. Heteroepitaxy of distorted rutile-structure WO2 and NbO2 thin films. Journal of Materials Research 28, 2555–2563 (2013). https://doi.org/10.1557/jmr.2013.247

Download citation