Ultrathin NiO nanoflakes perpendicularly oriented on carbon nanotubes as lithium ion battery anode


Core-shell nickel oxide/carbon nanotube (CNT) microwires, with interconnected nickel oxide nanoflakes (~10 nm in thickness) vertically oriented on polymer-based CNTs, were synthesized by using low-cost starting materials and a scalable growth route. As revealed by morphological characterization, sheet-sheet and wire-wire interwoven of the composite constructed a porous structure. The composite as lithium ion battery anode exhibited high reversible capacity of 752 mAh/g at a current density of 100 mA/g over 30 cycles with 82% capacity retention. Even at high rate (1000 mA/g), the composite still delivered a high charge capacity (304 mAh/g) over 25 cycles. When the rate was reset to its initial value, 87.7% of the initial charge capacity was recovered. The composite showed remarkably enhanced performance compared to pure NiO, which was presumably due to the advantages of porous structure, oriented attachment, and attractive synergetic effect.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.


  1. 1.

    V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach: Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 4, 3243 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    J. Cabana, L. Monconduit, D. Larcher, and M.R. Palacin: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    M.M. Thackeray, C. Wolverton, and E.D. Isaacs: Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci. 5, 7854 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    V. Aravindan, J. Gnanaraj, Y.S. Lee, and S. Madhavi: LiMnPO4-a next generation cathode material for lithium-ion batteries. J. Mater. Chem. 2013, 1, 3518.

    CAS  Article  Google Scholar 

  5. 5.

    N.S. Choi, Z.H. Chen, S.A. Freunberger, X.L. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, and P.G. Bruce: Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51, 9994 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    M.Y. Ge, J.P. Rong, X. Fang, and C.W. Zhou: Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    B. Wang, J.L. Cheng, Y.P. Wu, D. Wang, and D.N. He: Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries. Electrochem. Commun. 23, 5 (2012).

    Article  Google Scholar 

  9. 9.

    V. Aravindan, P.S. Kumar, J. Sundaramurthy, W.C. Ling, S. Ramakrishna, and S. Madhavi: Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. J. Power Sources 227, 284 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Y.N. Nuli, P. Zhang, Z.P. Guo, H.K. Liu, J. Yang, and J.L. Wang: Nickel-cobalt oxides/carbon nanoflakes as anode materials for lithium-ion batteries. Mater. Res. Bull. 44, 140 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    Q.M. Pan, L.M. Qin, J. Liu, and H.B. Wang: Flower-like ZnO-NiO-C films with high reversible capacity and rate capability for lithium-ion batteries. Electrochim. Acta 55, 5780 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Xia, W.K. Zhang, Z. Xiao, H. Huang, H.J. Zeng, X.R. Chen, F. Chen, Y.P. Gan, and X.Y. Tao: Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J. Mater. Chem. 22, 9209 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    M.Y. Cheng and B.J. Hwang: Mesoporous carbon-encapasulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery. J. Power Sources 195, 4977 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    T. Li, S.B. Ni, X.H. Lv, X.L. Yang, and S. Duan: Preparation of NiO-Ni/natural graphite composite anode for lithium ion batteries. J. Alloys Compd. 553, 167 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    M.M. Rahman, S.L. Chou, C. Zhong, J.Z. Wang, D. Wexler, and H.K. Liu: Spray pyrolyzed NiO-C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention. Solid State Ionics 180, 1646 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    H.W. Lu, D. Li, K. Sun, Y.S. Li, and Z.W. Fu: Carbon nanotube reinforced NiO fibers for rechargeable lithium batteries. Solid State Sci. 11, 982 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    I.R.M. Kottegoda, N.H. Idris, L. Lu, J.Z. Wang, and H.K. Liu: Synthesis and characterization of graphene-nickle oxide nanostructures for fast charge-discharge application. Electrochim. Acta 56, 5815 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    Y.J. Mai, S.J. Shi, D. Zhang, Y. Lu, C.D. Gu, and J.P. Tu: NiO-graphene hybrid as an anode material for lithium ion batteries. J. Power Sources 204, 155 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    X.J. Zhu, J. Hu, H.L. Dai, and L. Jiang: Reduced graphene oxide and nanosheet-based nickel oxide microsphere composite as an anode material for lithium ion batteries. Electrochim. Acta 64, 23 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    C.H. Xu, J. Sun, and L. Gao: large scale synthesis of nickel oxide/multiwalled carbon nanotube composites by direct thermal decomposition and their lithium storage properties. J. Power Sources 196, 5138 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    S.G. Hwang, G.O. Kim, S.R. Yun, and K.S. Ryu: NiO nanoparticles with plate structure growth on graphene as fast charge-discharge anode materials for lithium ion batteries. Electrochim. Acta 78, 406 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    G.M. Zhou, D.W. Wang, L.C. Yin, N. Li, F. Li, and H.M. Cheng: Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6, 3214 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    J.Z. Fan, H.Y. Mi, Y.L. Xu, and B. Gao: In situ fabrication of Ni(OH)2 nanofibers on polypyrrole-based carbon nanotubes for high-capacitance supercapacitors. Mater. Res. Bull. 48, 1342 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    P. Palanisamy and A.M. Raichur: Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique. Mater. Sci. Eng., C 29, 199 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    Q.Y. Li, R.N. Wang, Z.R. Nie, Z.H. Wang, and Q. Wei: Preparation and characterization of nanostructured Ni(OH)2 and NiO thin films by a simple solution growth process. J. Colloid Interface Sci. 320, 254 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    C.S. Shi, G.Q. Wang, N.Q. Zhao, X.W. Du, and J.J. Li: NiO nanotubes assembled in pores of porous anodic alumina and their optical absorption properties. Chem. Phys. Lett. 454, 75 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    M.K. Song, S.J. Par, F.M. Alamgir, J. Cho, and M.L. Liu: Nanostructured electrodes for lithium-ion and lithium-air batteries. The latest developments, challenges, and perspectives. Mater. Sci. Eng., R 72, 203 (2011).

    Article  Google Scholar 

  28. 28.

    A. Kalam, A.S. Al-Shihri, A.G. Al-Sehemi, N.S. Awwad, G.H. Du, and T. Ahmad: Effect of pH on solvothermal synthesis of β-Ni(OH)2 and NiO nano-architectures: Surface area studies, optical properties and adsorption studies. Superlattice Microstruct. 55, 83 (2013).

    CAS  Article  Google Scholar 

  29. 29.

    C.M. Yang, C. Weidenthaler, B. Spliethoff, M. Mayanna, and F. Schuth: Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chem. Mater. 17, 355 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    X. Chen, N.Q. Zhang, and K.N. Sun: Facile ammonia-induced fabrication of nanoporous NiO films with enhanced lithium-storage properties. Electrochem. Commun. 20, 137 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    H. Wu, M. Xu, H.Y. Wu, J.J. Xu, Y.L. Wang, Z. Peng, and G.F. Zheng: Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes. J. Mater. Chem. 22, 19821 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    D. Xie, W.W. Yuan, Z.M. Dong, Q.M. Su, J. Zhang, and G.H. Du: Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance. Electrochim. Acta 92, 87 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    A. Débart, L. Dupont, P. Poizot, J.B. Lerichen, and J.M. Tarascon: A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J. Eletrochem. Soc. 148, A1266 (2001).

    Article  Google Scholar 

  34. 34.

    B. Varghese, M.V. Reddy, Y. Zhu, C.S. Lit, T.C. Hoong, G.V. Subba Rao, B.V.R. Chowdari, A.T.S. Wee, C.T. Lim, and C.H. Sow: Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem. Mater. 20, 3360 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    X.H. Huang, J.P. Tu, B. Zhang, C.Q. Xhang, Y. Li, Y.F. Yuan, and H.M. Wu: Electrochemical properties of NiO-Ni nanocomposite as anode material for lithium ion batteries. J. Power Sources 161, 541 (2006).

    CAS  Article  Google Scholar 

  36. 36.

    X.G. Liu, S.W. Or, C.G. Jin, Y.H. Lv, C. Feng, and Y.P. Sun: NiO/C nanocapsules with onion-like carbon shell as anode material for lithium ion batteries. Carbon 60, 215 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Y.Q. Zou and Y. Wang: NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 3, 2615 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    S.Q. Ci, J.P. Zou, G.S. Zeng, Q. Sheng, S.L. Luo, and Z.H. Wen: Improved electrochemical properties of single crystalline NiO nanoflakes fro lithium storage and oxygen electroreduction. RSC Adv. 2, 5185 (2012).

    CAS  Article  Google Scholar 

Download references


This work was financially supported from Scientific Research Program of the Higher Education Institution of Xinjiang (Grant No. XJEDU2012I05), the National Natural Science Foundation of China (Grant No. 21063013), and the Scientific Research Starting Foundation for Doctoral Graduate, Xinjiang University (Grant No. 07020428024).

Author information



Corresponding author

Correspondence to Hongyu Mi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhong, J., Chae, O.B., Shi, W. et al. Ultrathin NiO nanoflakes perpendicularly oriented on carbon nanotubes as lithium ion battery anode. Journal of Materials Research 28, 2577–2583 (2013). https://doi.org/10.1557/jmr.2013.227

Download citation