Water adsorption and interface energetics of zinc aluminate spinel nanoparticles: Insights on humidity effects on nanopowder processing and catalysis


Microcalorimetry was used to study the adsorption of water molecules on the surface of ZnAl2O4 nanoparticles ranging from the anhydrous to the fully hydrated states. Water adsorption of ZnAl2O4 showed similar behavior to the isostructural γ-Al2O3 and revealed possible existence of hydrophobic sites on the surfaces. At the lowest measured coverage (0.49 H2O per nm2), the enthalpy of adsorption is −155.46 kJ/mol. This value decays with increasing coverage and at around 13 H2O per nm2, the heat of adsorption levels at −44 kJ/mol, suggesting further adsorbed water has liquid-like features. The anhydrous surface energy for ZnAl2O4 was calculated to be 1.36 ± 0.08 J/m2 using water adsorption microcalorimetry data. High-temperature oxide melt solution calorimetry was also used to assess the surface energy, which was 1.29 ± 0.33 J/m2. Surface energies at different hydration states are reported and showed decrease with increasing coverage, suggesting that low humidity conditions allow higher driving forces for coarsening.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5


  1. 1.

    S.K. Sampath and J.F. Cordaro: Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels. J. Am. Ceram. Soc. 81(3), 649 (1998).

    CAS  Article  Google Scholar 

  2. 2.

    L. Zou, F. Li, X. Xiang, D.G. Evans, and X. Duan: Self-generated template pathway to high-surface-area zinc aluminate spinel with mesopore network from a single-source inorganic precursor. Chem. Mater. 18(25), 5852 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    W. Walerczyk, M. Zawadzki, and J. Okal: Characterization of the metallic phase in nanocrystalline ZnAl2O4-supported Pt catalysts. Appl. Surf. Sci. 257(6), 2394 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    H. Grabowska, M. Zawadzki, and L. Syper: Gas phase alkylation of 2-hydroxypyridine with methanol over hydrothermally synthesised zinc aluminate. Appl. Catal., A 314(2), 226 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    G. Baldinozzi, D. Simeone, D. Crosset, M. Dolle, L. Thome, and L. Mazerolles: Structural stability of ZnAl2O4 spinel irradiated by low energy particles. Nucl. Instrum. Methods Phys. Res., Sect. B 250, 119 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    A. Quentin, I. Monnet, D. Gosset, B. Lefrancois, and S. Bouffard: Amorphisation of ZnAl2O4 spinel under heavy ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 267(6), 980 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    T. Yamamoto, M. Shimada, K. Yasuda, S. Matsumura, Y. Chimi, and N. Ishikawa: Microstructure and atomic disordering spinel irradiated with swift of magnesium aluminate heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 245(1), 235 (2006).

    CAS  Article  Google Scholar 

  8. 8.

    T.D. Shen, S. Feng, M. Tang, J.A. Valdez, Y. Wang, and K.E. Sickafus: Enhanced radiation tolerance in nanocrystalline MgGa2O4. Appl. Phys. Lett. 90(26), (2007).

    Google Scholar 

  9. 9.

    R.C. Garvie: Occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem. 69(4), 1238 (1965).

    CAS  Article  Google Scholar 

  10. 10.

    J.M. McHale, A. Auroux, A.J. Perrotta, and A. Navrotsky: Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277(5327), 788 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    R.H.R. Castro and B.B. Wang: The hidden effect of interface energies in the polymorphic stability of nanocrystalline titanium dioxide. J. Am. Ceram. Soc. 94(3), 918 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    B.J. Kellett and F.F. Lange: Thermodynamics of densification: 1. Sintering of simple particle arrays, equilibrium-configurations, pore stability, and shrinkage. J. Am. Ceram. Soc. 72(5), 725 (1989).

    CAS  Article  Google Scholar 

  13. 13.

    R.H.R. Castro and D.V. Quach: Analysis of anhydrous and hydrated surface energies of gamma-Al2O3 by water adsorption microcalorimetry. J. Phys. Chem. C 116(46), 24726 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    A. Navrotsky: Progress and new directions in high-temperature calorimetry. Phys. Chem. Miner. 2(1–2), 89 (1977).

    CAS  Article  Google Scholar 

  15. 15.

    A. Navrotsky: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24(3), 222 (1997).

    CAS  Article  Google Scholar 

  16. 16.

    A. Navrotsky and O.J. Kleppa: Thermodynamics of cation distributions in simple spinels. J. Inorg. Nucl. Chem. 29(11), 2701 (1967).

    CAS  Article  Google Scholar 

  17. 17.

    R.H.R. Castro: Overview of conventional sintering, in Sintering: Mechanisms of Conventional Nanodensification and Field Assisted Processes (Engineering materials), edited by R.H.R. Castro and K. van Benthem (Springer-Verlag, Berlin Heidelberg, 2013).

    Google Scholar 

  18. 18.

    R.H.R. Castro: On the thermodynamic stability of nanocrystalline ceramics. Mater. Lett. 96(1), 45 (2013).

    CAS  Article  Google Scholar 

  19. 19.

    V. Bolis, B. Fubini, L. Marchese, G. Martra, and D. Costa: Hydrophilic and hydrophobic sites on dehydrated crystalline and amorphous silicas. J. Chem. Soc., Faraday Trans. 87(3), 497 (1991).

    CAS  Article  Google Scholar 

  20. 20.

    S. Brunauer, D.L. Kantro, and C.H. Weise: The surface energies of amorphous silica and hydrous amorphous silica. Can. J. Chem. 34(10), 1483 (1956).

    CAS  Article  Google Scholar 

  21. 21.

    C. Arrouvel, M. Digne, M. Breysse, H. Toulhoat, and P. Raybaud: Effects of morphology on surface hydroxyl concentration: A DFT comparison of anatase-TiO2 and gamma-alumina catalytic supports. J. Catal. 222(1), 152 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    R.H.R. Castro, S.V. Ushakov, L. Gengembre, D. Gouvea, and A. Navrotsky: Surface energy and thermodynamic stability of gamma-alumina: Effect of dopants and water. Chem. Mater. 18(7), 1867 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    T.B. Tran, S. Hayun, A. Navrotsky, and R.H.R. Castro: Transparent nanocrystalline pure and Ca-doped MgO by spark plasma sintering of anhydrous nanoparticles. J. Am. Ceram. Soc. 95(4), 1185 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    L. Perazolli, J.A. Varela, E.R. Leite, and E. Longo: Effect of atmosphere on the sintering and grain growth of tin oxide, in Advanced Powder Technology, edited by L. Salgado and F.A. Filho (Transtec Publications Ltd., Zurich, Switzerland, 1999), pp. 134.

    Google Scholar 

  25. 25.

    P.J. Anderson and P.L. Morgan: Effects of water vapour on sintering of MgO. Trans. Faraday Soc. 60, 930 (1964).

    CAS  Article  Google Scholar 

  26. 26.

    G.C.C. Costa, S.V. Ushakov, R.H.R. Castro, A. Navrotsky, and R. Muccillo: Calorimetric measurement of surface and interface enthalpies of yttria-stabilized zirconia (YSZ). Chem. Mater. 22(9), 2937 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    A. Navrotsky: Cation-distribution energetics and heats of mixing in MgFe2O4-MgAl2O4, ZnFe2O4-ZnAl2O4, and NiAl2O4-ZnAl2O4 spinels: Study by high-temperature calorimetry. Am. Mineral. 71(9–10), 1160 (1986).

    CAS  Google Scholar 

  28. 28.

    R.A. Robie and B.S. Hemingway: Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105Pascals) Pressure and at Higher Temperatures (U.S. Geological Survey, Reston, VA, 1995).

    Google Scholar 

  29. 29.

    A. Navrotsky, C.C. Ma, K. Lilova, and N. Birkner: Nanophase transition metal oxides show large thermodynamically driven shifts in oxidation-reduction equilibria. Science 330(6001), 199 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    O. Bomati-Miguel, L. Mazeina, A. Navrotsky, and S. Veintemillas-Verdaguer: Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis. Chem. Mater. 20(2), 591 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    N. Birkner and A. Navrotsky: Thermodynamics of manganese oxides: Effects of particle size and hydration on oxidation-reduction equilibria among hausmannite, bixbyite, and pyrolusite. Am. Mineral. 97(8–9), 1291 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    J. Majzlan, K.D. Grevel, and A. Navrotsky: Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (alpha-FeOOH), lepidocrocite (gamma-FeOOH), and maghemite (gamma-Fe2O3). Am. Mineral. 88(5–6), 855 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    N. Birkner, S. Nayeri, B. Pashaei, M.M. Najafpour, W.H. Casey, and A. Navrotsky: Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation. PNAS 110(22), 8801–8806 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Y.Y. Ma, R.H.R. Castro, W. Zhou, and A. Navrotsky: Surface enthalpy and enthalpy of water adsorption of nanocrystalline tin dioxide: Thermodynamic insight on the sensing activity. J. Mater. Res. 26(7), 848–853 (2011).

    CAS  Article  Google Scholar 

Download references


The authors are very grateful to the financial support from the U.S. Department of Energy, Office of Basic Energy Sciences grant number ER46795. We would like to thank Sanchita Dey for her help with TEM. Finally, D.V.Q. and R.H.R.C. would like to dedicate this article as a token to celebrate Prof. Alexandra Navrotsky’s 70th birthday and her immense contributions to the calorimetry and thermodynamics understanding of ceramic, earth, and environmental materials chemistry.

Author information



Corresponding author

Correspondence to Ricardo H. R. Castro.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Quach, D.V., Bonifacio, A.R. & Castro, R.H.R. Water adsorption and interface energetics of zinc aluminate spinel nanoparticles: Insights on humidity effects on nanopowder processing and catalysis. Journal of Materials Research 28, 2004–2011 (2013). https://doi.org/10.1557/jmr.2013.192

Download citation