Chemical durability of hierarchically porous silicalite-I membrane substrates in aqueous media


Zeolite-based supports for inorganic membranes intended for gas separation have the potential to increase the resistance to thermal shock-induced cracking compared with ceramic or metallic substrates. We have studied the effect of exposure at 90 °C of hierarchically porous silicalite-I substrates to aqueous solutions at pH 2.0, 10.6, and 13.0 for periods up to 168 h. Silicalite-I supports were produced in binder-free form by pulsed current processing and using clay-binders by conventional thermal treatment. Long-term (168 h) acid and alkali treatment of the silicalite-I substrates results in a slight removal of silicon (in acid) and aluminum (in alkali) and does not affect the specific surface area and the crystalline microporous structural features but broadens the size distribution of the macropores. The mechanical strength remains unchanged after exposure to both alkaline and acidic solutions and the binder-free substrates display more than 20 times higher strength than the binder-containing materials.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.


  1. 1.

    O. Camus, S. Perera, B. Crittenden, Y.C. van Delft, D.F. Meyer, P.P.A.C. Pex, I. Kumakiri, S. Miachon, J-A. Dalmon, S. Tennison, P. Chanaud, E. Groensmit, and W. Nobel: Ceramic membranes for ammonia recovery. AIChE J. 52(6), 2055 (2006).

    CAS  Article  Google Scholar 

  2. 2.

    J. Caro, M. Noack, and P. Kölsch: Zeolite membranes: From the laboratory scale to technical applications. Adsorption 11(3–4), 215 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    M. Noack, P. Kölsch, R. Schäfer, P. Toussaint, and J. Caro: Molecular sieve membranes for industrial application: Problems, progress, solutions. J. Chem. Eng. Technol. 25(3), 221 (2002).

    CAS  Article  Google Scholar 

  4. 4.

    E.E. McLeary, J.C. Jansen, and F. Kapteijn: Zeolite based films, membranes and membrane reactors: Progress and prospects. Microporous Mesoporous Mater. 90(1–3), 198 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    E. Piera, A. Giroir-fendler, J.A. Dalmon, H. Moueddeb, J. Coronas, M. Menéndez, and J. Santamaria: Separation of alcohols and alcohols/O2 mixtures using zeolite MFI membranes. J. Mem. Sci. 142, 97 (1998).

    CAS  Article  Google Scholar 

  6. 6.

    E. Piera, C. Téllez, J. Coronas, M. Menéndez, and J. Santamaria: Use of zeolite membrane reactors for selectivity enhancement: Application to the liquid-phase oligomerization of i-butene. Catal. Today 67(1–3), 127 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    W.C. Wong, L.T.Y. Au, C.T. Ariso, and K.L. Yeung: Effects of synthesis parameters on the zeolite membrane growth. J. Mem. Sci. 191(1–2), 143 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Á. Berenguer-Murcia, J. Garcia-Martinez, D. Cazorla-Amorós, Á. Linares-Solano, and A.B. Fuertes: Silicalite-1 membranes supported on porous carbon discs. Microporous Mesoporous Mater. 59(2–3), 147 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    F. Akhtar, A. Ojuva, S.K. Wirawan, J. Hedlund, and L. Bergström: Hierarchically porous binder-free silicalite-1 discs: A novel support for all-zeolite membranes. J. Mater. Chem. 21(24), 8822 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    R. Lai and G.R. Gavalas: Surface seeding in ZSM-5 membrane preparation. Ind. Eng. Chem. Res. 37(11), 4275 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    H-Z. Jeannette-Mareike: Chemical and thermal stability of mesoporous ceramic membranes, Ph.D. Thesis. Proefschrift Universiteit Twente, Enschede, The Netherlands, 1995.

    Google Scholar 

  12. 12.

    M. Mallada Reyes and M. Menédez: Inorganic Membranes, Synthesis, Characterization and Applications, 13 serie (Elsevier B.V., England, 2008), p. 7.

    Google Scholar 

  13. 13.

    T. Van Gestel, C. Vandecasteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B. Van der Bruggen, and G. Maes: Alumina and titania multilayer membranes for nanofiltration: Preparation, characterization and chemical stability. J. Membr. Sci. 207(1), 73 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    R.K. Iler: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (Wiley Interscience, New York, 1979).

    Google Scholar 

  15. 15.

    C. Andersson and J. Hedlund: Effects of exposure to water and ethanol on silicalite-1 membranes. J. Membr. Sci. 313(41), 120 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    M.R. Apelian, A.S. Fung, G.J. Kennedy, and T.F. Degnan: Dealumination of zeolite β via dicarboxylic acid treatment. J. Phys. Chem. 100(41), 16577 (1996).

    CAS  Article  Google Scholar 

  17. 17.

    M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi, and M. Matsukata: Alkali-treatment technique: New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. J. Appl. Catal. 219(1–2), 33 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    A. Čimek, B. Subotić, I. Šmit, A. Tonejc, R. Aiello, F. Crea, and A. Nastro: Dissolution of high-silica zeolites in alkaline solutions II: Dissolution of ‘activated’ silicalite-1 and ZSM-5 with different aluminum content. Microporous Mater. 8(3–4), 159 (1997).

    Article  Google Scholar 

  19. 19.

    S. Werner: Formation of silicic acid in aqueous suspensions of different silica modifications: In equilibrium concepts in natural water systems. J. Am. Chem. Soc. 67, 161 (1967).

    Google Scholar 

  20. 20.

    H. Beyer: Dealumination techniques for zeolites. Molecular Seive 3, 203 (2002).

    CAS  Google Scholar 

  21. 21.

    Y.Y. Li, S.P. Perera, B.D. Crittenden, and J. Bridgwater: The effect of the binder on the manufacture of a 5A zeolite monolith. Powder Technol. 116(1), 85 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    R. van Mao, E. Rutinduka, C. Detellier, P. Gougay, V. Hascoet, S. Tavakoliyan, S. V Hoa, and T. Matsuura: Mechanical and pore characteristics of zeolite composite membranes. J. Mater. Chem. 9(3), 783 (1999).

    CAS  Article  Google Scholar 

  23. 23.

    E.H. Oelkers, J. Schott, and J-L. Devidal: The effect of aluminum, pH, and chemical affinity on the rates of aluminosilicate dissolution reactions. Geochim. Cosmochim. Acta 58(9), 2011 (1994).

    CAS  Article  Google Scholar 

  24. 24.

    W.H. Casey, H.R. Westrich, and G.W. Arnold: Surface chemistry of labradorite feldspar reacted with aqueous solutions at pH = 2, 3, and 12. Geochim. Cosmochim. Acta 52(12), 2795 (1988).

    CAS  Article  Google Scholar 

  25. 25.

    ASTM standard F394-78: Test Method for Biaxial Flexure Strength (Modulus of Rupture) of Ceramic Substrates (ASTM international, West conshohocken, PS, DOI: 10-1520/F0394-78R96, 1996).

    Google Scholar 

  26. 26.

    Z. Xie and J.V. Walther: Incongruent dissolution and surface area of kaolinite. Geochim. Cosmochim. Acta 56(9), 3357 (1992).

    CAS  Article  Google Scholar 

  27. 27.

    H.M. May, D.G. Klnniburgh, P.A. Helmke, and M.L. Jackson: Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites. Geochim. Cosmochim. Acta 50(8), 1667 (1986).

    CAS  Article  Google Scholar 

  28. 28.

    R.L. Hartman and H.S. Fogler: Understanding the dissolution of zeolites. J. Am. Chem. Soc. 23(10), 5477 (2007).

    CAS  Google Scholar 

  29. 29.

    G. Jozefaciuk and G. Bowanko: Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals. Clays Clay Miner. 50(6), 771 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    F. Shi: Ceramic Material-Progress in Modern Ceramics (Intech, Rijeka, Croatia, 2012).

    Google Scholar 

Download references


The authors would like to thank Swedish Foundation for Scientific Research (SSF) and Berzelii center EXSELENT on porous material at Stockholm University for financing this work. We like to acknowledge Dr. Kjell Jansson for his help with the electron microscopy.

Author information



Corresponding author

Correspondence to Lennart Bergström.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Keshavarzi, N., Akhtar, F. & Bergström, L. Chemical durability of hierarchically porous silicalite-I membrane substrates in aqueous media. Journal of Materials Research 28, 2253–2259 (2013).

Download citation