A facile preparation of hyperbranched copper phthalocyanine microspheres and their wideband microwave absorption properties

Abstract

Hyperbranched copper phthalocyanine (CuPc) with uniform spherical morphology has been firstly obtained by ethylene glycol solvothermal synthetic route. The highly dispersed spherical CuPc aggregates with a diameter of ~500 nm. X-ray diffraction indicated that the molecules were stacked into one-dimensional b-axis aggregate. In addition, the split Soret band together with the broadened and blue-shifted Q-bands in the optical spectra suggested the H (face-to-face) type of interactions in the arrangement of macrocycles in a dense-packed structure. Due to its good symmetrical structure and unique morphology, the hyperbranched spherical CuPc showed excellent broadband microwave absorption behaviors in a frequency of 2-18 GHz. Over an absorber of 5 mm thickness, an absorption bandwidth of 12 GHz corresponding to reflection loss below -10 dB can be obtained. The high value of microwave reflection about -50 dB at the frequency of 16.5 GHz also suggested that the hyperbranched spherical CuPc can be used as promising microwave absorbing materials.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    F. Meng, R. Zhao, M. Xu, Y. Zhan, Y. Lei, J. Zhong, and X. Liu: Fe–phthalocyanine oligomer/Fe3O4 nano-hybrid particles and their effect on the properties of polyarylene ether nitriles magnetic nanocomposites. Colloids Surf., A 375, 245–251 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv, J.P. Lei, and C.G. Lee: Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl. Phys. Lett. 89, 053115–053118 (2006).

    Article  Google Scholar 

  3. 3.

    C.C. Lee and D.H. Chen: Ag nanoshell-induced dual-frequency electromagnetic wave absorption of Ni nanoparticles. Appl. Phys. Lett. 90, 193102 (2007).

    Article  Google Scholar 

  4. 4.

    S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, and S. Sasaki: A millimeter-wave absorber based on gallium-substituted e-iron oxide nanomagnets. Angew. Chem. Int. Ed. 46, 8392–8395 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    Y.J. Chen, P. Gao, R.X. Wang, C.L. Zhu, L.J. Wang, M.S. Cao, and H.B. Jin: Porous Fe3O4/SnO2 core/shell nanorods: Synthesis and electromagnetic properties. J. Phys. Chem. C 113, 10061–10064 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    Y.J. Chen, P. Gao, C.L. Zhu, R.X. Wang, L.J. Wang, M.S. Cao, and X.Y. Fang: Synthesis, magnetic and electromagnetic wave absorption properties of porous Fe3O4/Fe/SiO2 core/shell nanorods. J. Appl. Phys. 106, 054303 (2009).

    Article  Google Scholar 

  7. 7.

    Q. Liu, D. Zhang, and T. Fan: Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl. Phys. Lett. 93, 013110–013112 (2008).

    Article  Google Scholar 

  8. 8.

    A. Namai, S. Sakurai, M. Nakajima, T. Suemoto, K. Matsumoto, M. Goto, S. Sasaki, and S. Ohkoshi: Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J. Am. Chem. Soc. 131, 1170 (2009).

    CAS  Article  Google Scholar 

  9. 9.

    T. Higuchi, T. Murayama, E. Itoh, and K. Miyairi: Electrical properties of phthalocyanine based field effect transistors prepared on various gate oxides. Thin Solid Films 499, 374–379 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    T. Yasuda and T. Tsutsui: Organic field-effect transistors based on high electron and ambipolar carrier transport properties of copper-phthalocyanine. Chem. Phys. Lett. 402, 395–398 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    C. Schlebusch, J. Morenzin, B. Kessler, and W. Eberhardt, Organic photoconductors with C60 for xerography. Carbon 37, 717–723 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    Q.X. Tang, L.Q. Li, Y.B. Song, Y.L. Liu, H.X. Li, W. Xu, Y.Q. Liu, W.P. Hu, and D.B. Zhu: Photo switches and phototransistors of organic single crystalline sub-micro/nanometer ribbons. Adv. Mater. 19, 2624 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    W.F. Cao, H.Y. Tu, J. Wang, H. Tian, Y. Wang, D.H. Gu, and F.X. Gan: Synthesis and optical properties of axially bromo-substituted subphthalocyanines. Dyes Pigm. 54, 213–219 (2002).

    CAS  Article  Google Scholar 

  14. 14.

    J.H. Yum, S.R. Jang, R.H. Baker, M. Grätzel, J.J. Cid, T. Torres, and M.K. Nazeeruddin: Effect of coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells. Langmuir 24, 5636–5640 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    P.A. Troshin, R. Koeppe, A.S. Peregudov, S.M. Peregudova, M. Egginger, R.N. Lyubovskaya, and N.S. Sariciftci: Supramolecular association of pyrrolidinofullerenes bearing chelating pyridyl groups and zinc phthalocyanine for organic solar cells. Chem. Mater. 19, 5363–5372 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    B.O. Agboola and K.I. Ozoemena: Efficient electrocatalytic detection of epinephrine at gold electrodes modified with self-assembled metallo-ctacarboxyphthalocyanine complexes. Electroanalysis 20, 1696–1707 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    F. Bedioui, S. Griveau, T. Nyokong, A.J. Appleby, C.A. Caro, M. Gulppi, G. Ochoa, and J.H. Zagal: Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys. Chem. Chem. Phys. 9, 3383–3396 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    X. Wang, J. Zhuang, Q. Peng, and Y. Li: A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    J. Gao, C. Cheng, X. Zhou, Y. Li, X. Xu, X. Du, and H. Zhang: Synthesis of size controllable cu-phthalocyanine nanofibers by simple solvent diffusion method and their electrochemical properties. J. Colloid Interface Sci. 342, 225–228 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    K. Guo, S. Yoshimoto, and K. Itaya: Two-dimensional self-organization of phthalocyanine and porphyrin: Dependence on the crystallographic orientation of Au. J. Am. Chem. Soc. 125, 14976–14977 (2003).

    Article  Google Scholar 

  21. 21.

    L. Wu, Q. Wang, J. Lu, Y. Bian, J. Jiang, and X. Zhang: Helical nanostructures self-assembled from optically active phthalocyanine derivatives bearing four optically active binaphthyl moieties: Effect of metal-ligand coordination on the morphology, dimension, and helical pitch of self-assembled nanostructures. Langmuir 26, 7489–7497 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    R. Zhao, K. Jia, J. Wei, J. Pu, and X. Liu: Hierarchically nanostructured Fe3O4 microspheres and their novel microwave electromagnetic properties. Mater. Lett. 64, 457 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    F. Meng, R. Zhao, Y. Zhan, Y. Lei, J. Zhong, and X. Liu: One-step synthesis of Fe-phthalocyanine/Fe3O4 hybrid microspheres. Mater. Lett. 65, 264 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    F. Meng, R. Zhao, Y. Zhan, Y. Lei, J. Zhong, and X. Liu: Preparation and microwave absorption properties of Fe-phthalocyanine oligomer/Fe3O4 hybrid microspheres. Appl. Surf. Sci. 257, 5000 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    J. Wei, R. Zhao, Y. Zhan, F. Meng, X. Yang, M. Xu, and X. Liu: One-step solvothermal syntheses and microwave electromagnetic properties of organic magnetic resin/Fe3O4 hybrid nanospheres. Appl. Surf. Sci. 258, 6705–6711 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    M. Guo, X. Yan, Y. Kwon, T. Hayakawa, M. Kakimoto, and Goodson T. III: High frequency dielectric response in a branched phthalocyanine. J. Am. Chem. Soc. 128, 14820–14821 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    A.W. Snow and N.L. Jarvis: Molecular association and monolayer formation of soluble phthalocyanine compounds. J. Am. Chem. Soc. 106, 4706–4711 (1984).

    CAS  Article  Google Scholar 

  28. 28.

    Z. Chen, C. Zhong, Z. Zhang, Z. Li, L. Niu, Y. Bin, and F. Zhang: Photoresponsive j-aggregation behavior of a novel azobenzene-phthalocyanine dyad and its third-order optical nonlinearity. J. Phys. Chem. B 112, 7387–7389 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    Y. Zhan, X. Yang, F. Meng, J. Wei, R. Zhao, and X. Liu: Controllable synthesis, magnetism and solubility enhancement of graphene nanosheets/magnetite hybrid material by covalent bonding. J. Colloid Interface Sci. 363, 98–104 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    P.J. Camp, A.C. Jones, R.K. Neely, and N.M. Speirs: Aggregation of copper(II) tetrasulfonated phthalocyanine in aqueous salt solutions. J. Phys. Chem. A 106, 10725–10732 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    Z. Xu, H. Li, K. Li, Y. Kuang, Y. Wang, Q. Fu, Z. Cao, and W. Li: Carbon nanotube-templated copper phthalocyanine derivative assemblies via solid-phase synthesis: Effects of hydrogen bond on the structure of the assemblies. Cryst. Growth Des. 9, 4136 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Y. Luo, J. Gao, C. Cheng, Y. Sun, X. Du, G. Xu, and Z. Wang: Fabrication micro-tube of substituted Zn–phthalocyanine in large scale by simple solvent evaporation method and its surface photovoltaic properties. Org. Electron. 9, 466 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    J. Fox, T. Katz, S. Elshocht, T. Verbiest, M. Kauranen, A. Persoons, T. Thongpanchang, T. Krauss, and L. Brus: Synthesis, self-assembly, and nonlinear optical properties of conjugated helical metal phthalocyanine derivatives. J. Am. Chem. Soc. 121, 3453–3459 (1999).

    CAS  Article  Google Scholar 

  34. 34.

    M.K. Debe and K.K. Kan: Effect of gravity on copper phthalocyanine thin films II: Spectroscopic evidence for a new oriented thin film polymorph of copper phthalocyanine grown in a microgravity environment. Thin Solid Films 186, 289–325 (1990).

    CAS  Article  Google Scholar 

  35. 35.

    P.H. Lippel, R.J. Wilson, M.D. Miller, C. Wöll, and S. Chiang: High-resolution imaging of copper-phthalocyanine by scanning-tunneling microscopy. Phys. Rev. Lett. 62, 171–174 (1989).

    CAS  Article  Google Scholar 

  36. 36.

    A.N. Yusoff, M.H. Abdullah, S.H. Ahmad, S.F. Jusoh, A.A. Mansor, and S.A.A. Hamid: Electromagnetic and absorption properties of some microwave absorbers. J. Appl. Phys. 92, 876–883 (2002).

    CAS  Article  Google Scholar 

  37. 37.

    Z. Ma, C. Cao, Q. Liu, and J. Wang: A new method to calculate the degree of electromagnetic impedance matching in one-layer microwave absorbers. Chin. Phys. Lett. 29, 038401–038405 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (Grant No. 103.1.2.E022050205), Major Science and Technology Project in Sichuan Province (Grant No. 2010 FZ 0117), “863” National Major Program of High Technology of China (Grant No. 2012AA03A212), and National Natural Science Foundation (Grant No. 51173021).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiao-Bo Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, R., Tang, H., Guo, H. et al. A facile preparation of hyperbranched copper phthalocyanine microspheres and their wideband microwave absorption properties. Journal of Materials Research 28, 1609–1616 (2013). https://doi.org/10.1557/jmr.2013.152

Download citation