Deposition and characterization of nanostructured Cu2O thin-film for potential photovoltaic applications

Abstract

Copper (I) oxide (Cu2O) is a direct band gap semiconductor with p-type conductivity and is a potential candidate for multi-junction solar cells. In this work, incoherent light source based photo-assisted metal-organic chemical vapor deposition (MOCVD) was used to deposit high quality Cu2O thin films on n-type <100> silicon and quartz substrates. X-ray diffraction studies reveal that crystalline Cu2O is deposited. UV-Vis-NIR spectroscopy results indicated a band gap of 2.44 eV for Cu2O thin films. Transmission electron spectroscopy results show that the Cu2O film grows in the form of three-dimensional islands composed of smaller nanocrystalline grains in the range of 10-20 nm. I-V measurements indicate that the Cu2O/n-Si device fabricated using the MOCVD process has a lower dark current density than other devices reported in the literature.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

References

  1. 1.

    Solar markets: Overall Growth & Size by Country, available: http://solarcellcentral.com/markets_page.html, June 2012.

    Google Scholar 

  2. 2.

    R. Singh and J.D. Leslie: Economic requirements for new materials for solar photovoltaic cells. Sol. Energy 24 (6), 589 (1980).

    CAS  Article  Google Scholar 

  3. 3.

    M.A. Green: The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Prog. Photovoltaics Res. Appl. 17 (3), 183 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Z. Wang, P. Han, H. Lu, H. Qian, L. Chen, Q. Meng, N. Tang, F. Gao, Y. Jia, J. Wu, Y. Fei, W. Wu, H. Zhu, J. Ji, Z. Shi, A. Sugianto, L. Mai, B. Hallam, and S. Wenham: Advanced PERC and PERL production cells with 20.3% record efficiency for standard commercial p-type silicon wafers. Prog. Photovoltaics Res. Appl. 20 (3), 260 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    R. Singh and G.F. Alapatt: Innovative paths for providing green energy by the use of photovoltaics for sustainable global economic growth, in Photonic Innovations and Solutions for Complex Environments and Systems (PISCES), edited by A. Lakhtakia and J.A. Todd (Proc. SPIE 8482, Bellingham, WA, 2012), p. 848205.

    Article  Google Scholar 

  6. 6.

    R. Singh, N. Gupta, and K.F. Poole: Global green energy conversion revolution in 21st century through solid state devices. In Proceedings of 26th IEEE International Conference on Microelectronics, Nis, Serbia, May 11-14, 2008, edited by N. Stojadinovi, (IEEE, New York, NY), p. 45.

    Google Scholar 

  7. 7.

    R. Singh: Why silicon is and will remain the dominant photovoltaic material. J. Nanophotonics 3 (1), 032503 (2009).

    Article  Google Scholar 

  8. 8.

    R. Singh, G.F. Alapatt, and K.F. Poole: Photovoltaics: Emerging role as a dominant electricity generation technology in the 21st century. In Proceedings of 28th IEEE International Conference on Microelectronics, Nis, Serbia, May 13-16, 2012, edited by N. Stojadinovi, (IEEE, New York, NY), p. 53.

  9. 9.

    Annual Data 2012, Copper Supply and Consumption 1991-2011. Copper Development Association Inc., NY. http://www.copper.org/resources/market_data/pdfs/annual_data.pdf.

  10. 10.

    W. Shockley and H.J. Queisser: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32 (3), 510 (1961).

    CAS  Article  Google Scholar 

  11. 11.

    S.B. Ogale, P.G. Bilurkar, N. Mate, S.M. Kanetkar, N. Parikh, and B. Patnaik: Deposition of copper oxide thin films on different substrates by pulsed excimer laser ablation. J. Appl. Phys. 72 (8), 3765 (1992).

    CAS  Article  Google Scholar 

  12. 12.

    J.F. Pierson, A. Thobor-Keck, and A. Billard: Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 210 (3-4), 359 (2003).

    CAS  Article  Google Scholar 

  13. 13.

    B. Balamurugan and B.R. Mehta: Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films 396 (1-2), 90 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    L.C. Olsen, F.W. Addis, and W. Miller: Experimental and theoretical studies of Cu2O solar cells. Solar Cells 7 (3), 247 (1982).

    CAS  Article  Google Scholar 

  15. 15.

    E. Kennard and E. Dieterich: An effect of light upon the contact potential of selenium and cuprous oxide. Phys. Rev. 9 (1), 58 (1917).

    Article  Google Scholar 

  16. 16.

    F. Biccari: Defects and doping in Cu2O. Ph.D. Dissertation, Department of Physics, Sapienza - University of Rome, Rome, Italy, 2009.

    Google Scholar 

  17. 17.

    A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi: Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl. Phys. Lett. 88 (16), 163502 (2006).

    Article  Google Scholar 

  18. 18.

    M.F. Jawad, R.A. Ismail, and K.Z. Yahea: Preparation of nanocrystalline Cu2O thin film by pulsed laser deposition. J. Mater. Sci. - Mater. Electron. 24 (9), 1244 (2011).

    Article  Google Scholar 

  19. 19.

    T. Maruyama: Copper oxide thin films prepared by chemical vapor deposition from copper dipivaloylmethanate. Sol. Energy Mater. Sol. Cells 56 (1), 85 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    J.A. Switzer, R. Liu, E.W. Bohannan, and F. Ernst: Epitaxial electrodeposition of a crystalline metal oxide onto single-crystalline silicon. J. Phys. Chem. B 106 (48), 12369 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    L.S. Huang, S.G. Yang, T. Li, B.X. Gu, Y.W. Du, Y.N. Lu, and S.Z. Shi: Preparation of large-scale cupric oxide nanowires by thermal evaporation method. J. Cryst. Growth 260 (1-2), 130 (2004).

    CAS  Article  Google Scholar 

  22. 22.

    S. Ghosh, D.K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya, and W. Assmann: Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization. Vacuum 57 (4), 377 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    R. Singh and V. Parihar: Rapid photothermal processing (RPP) of dielectrics, in Handbook of Low and High Dielectric Constant Materials and their Applications, edited by H.S. Nalwa (Academic Press 2, San Diego, CA, 1999), p. 1.

    Google Scholar 

  24. 24.

    R. Singh, S. Nimmagadda, V. Parihar, Y. Chen, and K.F. Poole: Role of rapid photothermal processing in process integration. IEEE Trans. Electron Devices 45, 643 (1998).

    CAS  Article  Google Scholar 

  25. 25.

    S. Venkataraman, R. Singh, V. Parihar, K.F. Poole, and A. Rohatgi: Effect of ultraviolet and vacuum ultraviolet photons in rapid photothermal processing on the minority carrier life time of silicon wafers. J. Electron. Mater. 26, 1394 (1999).

    Article  Google Scholar 

  26. 26.

    A. Venkateshan, R. Singh, K.F. Poole, J. Harriss, H. Senter, R. Teague, and J. Narayan: High-gate dielectrics with ultra-low leakage current for sub-45 nm CMOS. Electron Lett. 43 (21), 1130 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    S. Shishiyanu, R. Singh, T. Shishiyanu, S. Asher, and R. Reedy: The mechanism of enhanced diffusion of phosphorus in silicon during rapid photothermal processing of solar cells. IEEE Trans. Electron Devices 58, 776 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    G. Kortüm, W. Braun, and G. Herzog: Principles and techniques of diffuse-reflectance spectroscopy. Angew. Chem. Int. Ed. Engl. 2, 333 (1963).

    Article  Google Scholar 

  29. 29.

    S. Jeong and E.S. Aydil: Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition. J. Cryst. Growth 311 (17), 4188 (2009).

    CAS  Article  Google Scholar 

  30. 30.

    K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G.K. Paul, and T. Sakurai: Thin film deposition of Cu2O and application for solar cells. Sol. Energy 80 (6), 715 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    M. Izaki, T. Shinagawa, K. Mizuno, Y. Ida, M. Inaba, and A. Tasaka: Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. J. Phys. D: Appl. Phys. 40 (11), 3326 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    J. Tauc, R. Grigorovici, and A. Vancu: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15 (2), 627 (1966).

    CAS  Article  Google Scholar 

  33. 33.

    H.M. Pathan, J.D. Desai, and C.D. Lokhande: Modified chemical deposition and physico-chemical properties of copper sulphide (Cu2S) thin films. Appl. Surf. Sci. 202 (1-2), 47 (2002).

    CAS  Article  Google Scholar 

  34. 34.

    F. Drobny and D. Pulfrey: The photovoltaic properties of thin copper oxide films, Proceedings of 13th IEEE Photo-voltaic Specialists Conference, Washington, DC, USA, 1978, edited by N. Stojadinovi, (IEEE, New York, NY), p. 180.

    Google Scholar 

  35. 35.

    R.A. Ismail: Characteristics of p-Cu2O/n-Si heterojunction photodiode made by rapid thermal oxidation. Semicond. Sci. Technol. 9, 51 (2009).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajendra Singh.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, N., Singh, R., Wu, F. et al. Deposition and characterization of nanostructured Cu2O thin-film for potential photovoltaic applications. Journal of Materials Research 28, 1740–1746 (2013). https://doi.org/10.1557/jmr.2013.150

Download citation