Wet processing for the fabrication of ceramic thin films on plastics


Development of a versatile technique for fabricating ceramic thin films on plastics has long been a challenge for those who aim at providing the surface of lightweight, flexible plastics a variety of functions. Wet processing techniques that have been reported so far on the fabrication of ceramic thin films on plastics are reviewed in this article. The techniques include crystalline nanoparticle deposition, liquid phase deposition, sol-gel method and chemical solution deposition (CSD). In these techniques, the issue of how to crystallize and/or densify the films on plastic substrates without firing has been focused on, and it would be recognized that great efforts have been made on this issue. Self-combustion of CSD thin films is also introduced, which only requires heat treatment at low temperatures for films to be crystallized. Finally a transfer process that our group has proposed recently is presented, which is unique in that the crystallization and densification are guaranteed by a firing step.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.


  1. 1.

    R.H. Reuss, B.R. Chalamala, A. Moussessian, M.G. Kane, A. Kumar, D.C. Zhang, J.A. Rogers, M. Hatalis, D. Temple, G. Moddel, B.J. Eliasson, M.J. Estes, J. Kunze, E.S. Handy, E.S. Harmon, D.B. Salzman, J.M. Woodall, M.A. Alam, J.Y. Murthy, S.C. Jacobsen, M. Olivier, D. Markus, P.M. Campbell, and E. Snow: Macroelectronics: Perspectives on technology and applications. Proc. IEEE 93, 1239 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    Y. Sun and J.A. Rogers: Inorganic semiconductors for flexible electronics. Adv. Mater. 19, 1897 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    S. Sobajima, H. Okaniwa, N. Takagi, I. Sugiyama, and K. Chiba: Production and properties of transparent electroconductive coating on polyester film. Jpn. J. Appl. Phys. 2(Suppl 2–1), 475 (1974).

    Article  Google Scholar 

  4. 4.

    K. Itoyama: Properties of Sn-doped indium oxide coatings deposited on polyester film by high rate reactive sputtering. J. Electrochem. Soc. 126, 691 (1979).

    CAS  Article  Google Scholar 

  5. 5.

    R.P. Howson, J.N. Avaratsiotis, M.I. Ridge, and C.A. Bishop: Properties of conducting transparent oxide films produced by ion plating onto room-temperature substrates. Appl. Phys. Lett. 35, 161 (1979).

    CAS  Article  Google Scholar 

  6. 6.

    T.L. Yang, D.H. Zhang, J. Ma, H.L. Ma, and Y. Chen: Transparent conducting ZnO: Al films deposited on organic substrates deposited by r.f. magnetron-sputtering. Thin Solid Films 326, 60 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    A.W. Ott and R.P.H. Chang: Atomic layer-controlled growth of transparent conducting ZnO on plastic substrates. Mater. Chem. Phys. 58, 132 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    B.A. Latella, G. Triani, Z. Zhang, K.T. Short, J.R. Bartlett, and M. Ignat: Enhanced adhesion of atomic layer deposited titania on polycarbonate substrates. Thin Solid Films 515, 3138 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    Z.M. Zhang, G. Triani, and L.J. Fan: Amorphous to anatase transformation in atomic layer deposited titania thin films induced by hydrothermal treatment at 120 °C. J. Mater. Res. 23, 2472 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Y.C. Chen, C.F. Yang, and E.Y. Hsueh: The application of AZOY transparent conductive oxide film in multifilm-coated polycarbonate optical glasses. J. Electrochem. Soc. 157, H987 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    D. Kim: Deposition of indium tin oxide films on polycarbonate substrates by direct metal ion beam deposition. Appl. Surf. Sci. 218, 70 (2003).

    CAS  Google Scholar 

  12. 12.

    T. Yamamoto, A. Miyake, T. Yamada, T. Morizane, T. Arimitsu, H. Makino, and N. Yamamoto: Properties of transparent conductive Ga-doped ZnO films on glass, PMMA and COP substrates. IEICE Trans. Electron. E91C, 1547 (2008).

    Article  Google Scholar 

  13. 13.

    H. Kim, J.S. Horwitz, G.P. Kushto, Z.H. Kafafi, and D.B. Chrisey: Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes. Appl. Phys. Lett. 79, 284 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    A. Miyake, T. Yamada, H. Makino, N. Yamamoto, and T. Yamamoto: Properties of highly transparent conductive Ga-doped ZnO films prepared on polymer substrates by reactive plasma deposition with DC arc discharge. J. Photopolym. Sci. Technol. 22, 497 (2009).

    CAS  Article  Google Scholar 

  15. 15.

    C.N. de Carvalho, G. Lavareda, E. Fortunato, R. Vilarinho, and A. Amaral: ITO films deposited by rf-PERTE on unheated polymer substrates-properties dependence on In-Sn alloy composition. Mater. Sci. Eng., B 109, 245 (2004).

    Article  CAS  Google Scholar 

  16. 16.

    N. Al-Dahoudi, H. Bisht, C. Göbbert, T. Krajewski, and M.A. Aegerter: Transparent conducting, anti-static and anti-static–anti-glare coatings on plastic substrates. Thin Solid Films 392, 299 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    M.A. Aegerter and N. Al-Dahoudi: Wet-chemical processing of transparent and antiglare conducting ITO coating on plastic substrates. J. Sol-Gel Sci. Technol. 27, 81 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    M. Langlet, A. Kim, A. Audier, C. Guillard, and J.M. Herrmann: Transparent photocatalytic films deposited on polymer substrates from sol-gel processed titania sols. Thin Solid Films, 429, 13 (2003).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Hu and C. Yuan: Low-temperature preparation of photocatalytic TiO2 thin films on polymer substrates by direct deposition from anatase sol. J. Mater. Sci. Technol. 22, 239 (2006).

    CAS  Article  Google Scholar 

  20. 20.

    J.H. Yang, Y.S. Han, and J.H. Choy: TiO2 thin-films on polymer substrates and their photocatalytic activity. Thin Solid Films 495, 266 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    W. Su, S. Wang, X. Wang, X. Fu, and J. Weng: Plasma pre-treatment and TiO2 coating of PMMA for the improvement of antibacterial properties. Surf. Coat. Technol. 205, 465 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    S.W. Lam, A. Soetanto, and R. Amal: Self-cleaning performance of polycarbonate surfaces coated with titania nanoparticles. J. Nanopart. Res. 11, 1971 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    F.C. Krebs: All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org. Electron. 10, 761 (2009).

    CAS  Article  Google Scholar 

  24. 24.

    F.C. Krebs: Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing. Sol. Energy Mater. Sol. Cells 93, 465 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    T. Königer and H. Münstedt: Coatings of indium tin oxide nanoparticles on various flexible polymer substrates: Influence of surface topography and oscillatory bending on electrical properties. J. Soc. Inf. Disp. 16, 559 (2008).

    Article  Google Scholar 

  26. 26.

    J. Puetz and M.A. Aegerter: Direct gravure printing of indium tin oxide nanoparticle patterns on polymer foils. Thin Solid Films 516, 4495 (2008).

    CAS  Article  Google Scholar 

  27. 27.

    S. Heusing, P.W. de Oliveira, E. Kraker, A. Haase, C. Palfinger, and M. Veith: Wet chemical deposited ITO coatings on flexible substrates for organic photodiodes. Thin Solid Films 518, 1164 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    H. Nagayama, H. Honda, and H. Kawahara: A new process for silica coating. J. Electrochem. Soc. 135, 2013 (1988).

    CAS  Article  Google Scholar 

  29. 29.

    S. Deki, Y. Aoi, O. Hiroi, and A. Kajinami: Titanium(IV) oxide thin films prepared from aqueous solution. Chem. Lett. 6, 433 (1996).

    Article  Google Scholar 

  30. 30.

    S. Deki, Y. Aoi, H. Yanagimoto, K. Ishii, K. Akamatsu, M. Mizuhata, and A. Kajinami: Preparation and characterization of Au-dispersed TiO2 thin films by a liquid-phase deposition method. J. Mater. Chem. 6, 1879 (1996).

    CAS  Article  Google Scholar 

  31. 31.

    K. Shimizu, H. Imai, H. Hirashima, and K. Tsukuma: Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films 351, 220 (1999).

    CAS  Article  Google Scholar 

  32. 32.

    J. Ou, J. Wang, D. Zhang, P. Zhang, S. Liu, P. Yan, B. Liu, and S. Yang: Fabrication and biocompatibility investigation of TiO2 films on the polymer substrates obtained via a novel and versatile route. Colloids Surf., B 76, 123 (2010).

    CAS  Article  Google Scholar 

  33. 33.

    G. Goutailler, C. Guillard, S. Daniele, and L.G. Hubert-Pfalzgraf: Low temperature and aqueous sol-gel deposit of photocatalytic active nanoparticulate TiO2. J. Mater. Chem. 13, 342 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    H. Imai, H. Morimoto, A. Tominaga, and H. Hirashima: Structural changes in sol-gel derived SiO2 and TiO2 films by exposure to water vapor. J. Sol-Gel Sci. Technol. 10, 45 (1997).

    CAS  Article  Google Scholar 

  35. 35.

    H. Imai and H. Hirashima: Preparation of porous anatase coating from sol–gel-derived titanium dioxide and titanium dioxide-silica by water-vapor exposure. J. Am. Ceram. Soc. 82, 2301 (1999).

    CAS  Article  Google Scholar 

  36. 36.

    M. Langlet, A. Kim, M. Audier, and J.M. Herrmann: Sol-gel preparation of photocatalytic TiO2 films on polymer substrates. J. Sol-Gel Sci. Technol. 25, 223 (2002).

    CAS  Article  Google Scholar 

  37. 37.

    A. Matsuda, Y. Kotani, K. Kogure, M. Tatsumisago, and T. Minami: Transparent anatase nanocomposite films by the sol–gel process at low temperatures. J. Am. Ceram. Soc. 83, 229 (2000).

    CAS  Article  Google Scholar 

  38. 38.

    Y. Kotani, A. Matsuda, M. Tasumisago, T. Minami, T. Umezawa, and T. Kogure: Formation of anatase nanocrystals in sol-gel derived TiO2-SiO2 thin films with hot water treatment. J. Sol-Gel Sci. Technol. 19, 585 (2000).

    CAS  Article  Google Scholar 

  39. 39.

    A. Matsuda, T. Matoda, T. Kogure, K. Tadanaga, T. Minami, and M. Tatsumisago: Formation of anatase nanocrystals-precipitated silica coatings on plastic substrates by the sol-gel process with hot water treatment. J. Sol-Gel Sci. Technol. 27, 61 (2003).

    CAS  Article  Google Scholar 

  40. 40.

    K. Tadanaga, K. Kitamuro, A. Matsuda, and T. Minami: Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method. J. Sol-Gel Sci. Technol. 26, 705 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    N. Yamaguchi, K. Tadanaga, A. Matsuda, and T. Minami: Formation of anti-reflective alumina films on polymer substrates by the sol-gel process with hot water treatment. Surf. Coat. Technol. 201, 3653 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    M. Hashizume and M. Hirashima: Sol-gel titania coating on unmodified and surface-modified polyimide films. J. Sol-Gel Sci. Technol. 62, 234 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    H. Imai, A. Tominaga, H. Hirashima, M. Toki, and M. Aizawa: Ultraviolet-laser-induced crystallization of sol-gel derived indium oxide films. J. Sol-Gel Sci. Technol. 13, 991 (1998).

    CAS  Article  Google Scholar 

  44. 44.

    H. Imai, A. Tominaga, H. Hirashima, M. Toki, and N. Asakumua: Ultraviolet-reduced reduction and crystallization of indium oxide films. J. Appl. Phys. 85, 203 (1999).

    CAS  Article  Google Scholar 

  45. 45.

    H. Imai, H. Hirashima, and K. Awazu: Alternative modification methods for sol–gel coatings of silica, titania and silica–titania using ultraviolet irradiation and water vapor. Thin Solid Films 351, 91 (1999).

    CAS  Article  Google Scholar 

  46. 46.

    N. Asakuma, T. Fukui, M. Aizawa, M. Toki, H. Imai, and H. Hirashima: Ultraviolet-laser-induced crystallization of sol-gel derived inorganic oxide films. J. Sol-Gel Sci. Technol. 19, 333 (2000).

    CAS  Article  Google Scholar 

  47. 47.

    N. Asakuma, T. Fukui, M. Toki, and H. Imai: Low-temperature synthesis of ITO thin films using an ultraviolet laser for conductive coating on organic polymer substrates. J. Sol-Gel Sci. Technol. 27, 91 (2003).

    CAS  Article  Google Scholar 

  48. 48.

    Y-H. Kim, J-S. Heo, T-H. Kim, S. Park, M-H. Yoon, K. Kim, M.S. Oh, G-R. Yi, Y-Y. Noh, and S.K. Park: Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 489, 128 (2012).

    CAS  Article  Google Scholar 

  49. 49.

    T. Königer, T. Rechtenwald, I. Al-Naimi, T. Frick, M. Schmidt, and H. Münstedt: CO2-laser treatment of indium tin oxide nanoparticle coatings on flexible polyethyleneterephthalate substrates. J. Coat. Technol. Res. 7, 261 (2010).

    Article  CAS  Google Scholar 

  50. 50.

    H. Salar Amoli and B. Fathi: Effect of pulse Nd-YAG laser beam interaction on annealing of nanopowder ITO using spin-on-glass. J. Sol-Gel Sci. Technol. 59, 32 (2011).

    CAS  Article  Google Scholar 

  51. 51.

    H. Salar Amoli, S. Shokatian, and M. Abdous: Thermal annealing combination with pulse Nd-YAG laser treatment on ITO on polycarbonate using spin coating process. J. Sol-Gel Sci. Technol. 62, 319 (2012).

    CAS  Article  Google Scholar 

  52. 52.

    M-G. Kim, M.G. Kanatzidis, A. Facchetti, and T.J. Marks: Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 10, 382 (2011).

    CAS  Article  Google Scholar 

  53. 53.

    J.W. Hennek, M-G. Kim, M.G. Kanatzidis, A. Facchetti, and T.J. Marks: Exploratory combustion synthesis: Amorphous indium yttrium oxide for thin-film transistors. J. Am. Chem. Soc. 134, 9593 (2012).

    CAS  Article  Google Scholar 

  54. 54.

    M-G. Kim, J.W. Hennek, H.S. Kim, M.G. Kanatzidis, A. Facchetti, and T.J. Marks: Delayed ignition of autocatalytic combustion precursors: Low-temperature nanomaterial binder approach to electronically functional oxide films. J. Am. Chem. Soc. 134, 11583 (2012).

    CAS  Article  Google Scholar 

  55. 55.

    H. Kozuka, A. Yamano, T. Fukui, H. Uchiyama, M. Takahashi, M. Yoki, and T. Akase: Large area ceramic thin films on plastics: A versatile route via solution processing. J. Appl. Phys. 111, 016106 (2012).

    Article  CAS  Google Scholar 

  56. 56.

    H. Kozuka, H. Uchiyama, T. Fukui, and M. Takahashi: Technique for fabricating ceramic films on substrates of low thermal resistance. Japanese Patent Application, No. 2011-22986.

  57. 57.

    H. Kozuka, T. Fuku, M. Takahashi, H. Uchiyama, and S. Tsuboi: Ceramic thin films on plastics: A versatile transfer process for large area as well as patterned coating. ACS Appl. Mater. Interfaces 4, 6415 (2012).

    CAS  Article  Google Scholar 

  58. 58.

    H. Kozuka, H. Uchiyama, T. Fukui, and M. Takahashi: Technique for fabricating ceramic films on substrates of low thermal resistance. Japanese Patent Application, No. 2011-285428.

  59. 59.

    H. Tomonaga and T. Morimoto: Indium-tin oxide coatings via chemical solution deposition. Thin Solid Films 392, 243 (2001).

    CAS  Article  Google Scholar 

  60. 60.

    M. Ohyama, H. Kozuka, and T. Yoko: Sol-gel preparation of transparent and conductive Al-doped ZnO films with highly preferential crystal orientation. J. Am. Ceram. Soc. 81, 1622 (1998).

    CAS  Article  Google Scholar 

  61. 61.

    M. Ohyama, H. Kozuka, and T. Yoko: Sol-gel preparation of ZnO films with preferential orientation along (002) plane from zinc acetate solution. Thin Solid Films 306, 78 (1997).

    CAS  Article  Google Scholar 

  62. 62.

    A. Yamano and H. Kozuka: Effects of the heat treatment conditions on the crystallographic orientation of Pb(Zr, Ti)O3 thin films prepared by polyvinylpyrrolidone-assisted sol-gel method. J. Am. Ceram. Soc. 90, 3882 (2007).

    CAS  Google Scholar 

  63. 63.

    A. Yamano and H. Kozuka: Single-step sol-gel deposition and dielectric properties of 0.4 μm thick, (001) oriented Pb(Zr, Ti)O3 thin films. J. Sol-Gel Sci. Technol. 47, 316 (2008).

    CAS  Article  Google Scholar 

  64. 64.

    Y. Qi, N.T. Jafferis, K. Lyons Jr., C.M. Lee, and M.C. McAlpine: Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 10, 524 (2010).

    CAS  Article  Google Scholar 

  65. 65.

    K.I. Park, S. Xu, Y. Liu, G.T. Hwang, S.J. Kang, Z.L. Wang, and K.J. Lee: Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939 (2010).

    CAS  Article  Google Scholar 

Download references


This work was financially supported by MEXT (Grant-in-Aid for Scientific Research (B), and High-Tech Research Center Project for Private Universities), JST (A-STEP FS-Stage, and Highway for Promoting the Utilization of Intellectual Properties), NSG Foundation, and Expenditures for Supporting Establishment of Research Centers, Kansai University. The author thanks Ms. Mayu Yoki, Mr. Takatoshi Akase, Dr. Akihiro Yamano, Mr. Takafumi Fukui and Mr. Mitsuru Takahashi, who performed the experimental work on the transfer technique at Kansai University. The author also thanks Dr. Hiroaki Uchiyama, Kansai University for his fruitful experimental suggestions.

Author information



Corresponding author

Correspondence to Hiromitsu Kozuka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kozuka, H. Wet processing for the fabrication of ceramic thin films on plastics. Journal of Materials Research 28, 673–688 (2013). https://doi.org/10.1557/jmr.2013.13

Download citation