Room-temperature gelcasting of alumina with a water-soluble copolymer


A novel and simple method for gelcasting of alumina was developed using a nontoxic and water-soluble copolymer of isobutylene and maleic anhydride (commercially called Isobam). In this method, there is requirement of only a small amount of Isobam (0.3 wt%) and neither initiators nor dispersants are needed for preparation and gelation of a 50 vol% solids loaded alumina slurry. The gelation rate increased with increasing solids loading but decreased with increasing Isobam content. A typical gelation time was 38 min for the slurry containing 50 vol% solids loading and 0.3 wt% Isobam. The resultant wet gel was strong enough to allow reversible bending and twisting. This simple gelling system is attractive for wet forming of ceramics because only a single additive, which acts as both dispersant and gelling agent at room temperature in air, is used.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.


  1. 1.

    O.O. Omatete, M.A. Janney, and R.A. Strehlow: Gelcasting - a new ceramic forming process. Am. Ceram. Soc. Bull. 70(10), 1641 (1991).

    CAS  Google Scholar 

  2. 2.

    M. Takeshita and S. Kurita: Development of self-hardening slip casting. J. Eur. Ceram. Soc. 17(2–3), 415 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    X.J. Mao, S. Shimai, M.J. Dong, and S.W. Wang: Gelcasting of alumina using epoxy resin as gelling agent. J. Am. Ceram. Soc. 90(3), 986 (2007).

    CAS  Article  Google Scholar 

  4. 4.

    X.J. Mao, S. Shimai, M.J. Dong, and S.W. Wang: Gelcasting and pressureless sintering of translucent alumina ceramics. J. Am. Ceram. Soc. 91(5), 1700 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    J.K. Park, J.S. Lee, and S.I. Lee: Preparation of porous cordierite using gelcasting method and its feasibility as a filter. J. Porous Mater. 9(3), 203 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    X.J. Mao, S. Shimai, and S.W. Wang: Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 28(1), 217 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    S.L. Morissette and J.A. Lewis: Chemorheoloy of aqueous-based alumina-poly(vinyl alcohol) gelcasting suspensions. J. Am. Ceram. Soc. 82(3), 521 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    F. Chabert, D.E. Dunstan, and G.V. Franks: Cross-linked polyvinyl alcohol as a binder for gelcasting and green machining. J. Am. Ceram. Soc. 91(10), 3138 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    E.W. Hansen, K.H. Holm, D.M. Jahr, K. Olafsen, and A. Stori: Reaction of poly(vinyl alcohol) and dialdehydes during gel formation probed by 1H n.m.r. - a kinetic study. Polymer 38(19), 4863 (1997).

    CAS  Article  Google Scholar 

  10. 10.

    S.B. Johnson, G.V. Franks, and D.E. Dunstan: A novel thermally activated crosslinking agent for chitosan in aqueous solution: A rheological investigation. Colloid Polym. Sci. 282(6), 602 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    C. Tallon, D. Jach, R. Moreno, M.I. Nieto, G. Rokicki, and M. Szafran: Gelcasting of alumina suspensions containing nanoparticles with glycerol monoacrylate. J. Am. Ceram. Soc. 29, 875 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    P. Bednarek, M. Szafran, Y. Sakka, and T. Mizerski: Gelcasting of alumina with a new monomer synthesized from glucose. J. Eur. Ceram. Soc. 30, 1795 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    A.J. Fanelli, R.D. Silvers, W.S. Frei, J.V. Burlew, and G.B. Marsh: New aqueous injection moulding process for ceramic powder. J. Am. Ceram. Soc. 72(10), 1833 (1989).

    CAS  Article  Google Scholar 

  14. 14.

    Y. Jia, Y. Kanno, and Z.P. Xie: Fabrication of alumina green body through gelcasting process using alginate. Mater. Lett. 57(16–17), 2530 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    O. Lyckfeldt, J. Brandt and S. Lesca: Protein forming–a novel shaping technique for ceramics. J. Eur. Ceram. Soc. 20(14–15), 2551 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    E. Adolfsson: Gelcasting of zirconia using agarose. J. Am. Ceram. Soc. 89(6), 1897 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    Y.L. Chen, Z.P. Xie, and Y. Huang: Alumina casting based on gelation of gelatine. J. Eur. Ceram. Soc. 19(2), 271 (1999).

    CAS  Article  Google Scholar 

  18. 18.

    X.J. Mao, S.W. Wang, and S. Shimai: Porous ceramics with tri-modal pores prepared by foaming and starch consolidation. Ceram. Int. 34(1), 217 (2008).

    Google Scholar 

  19. 19.

    J.N. Israelachvili: Intermolecular and Surface Forces, 2nd ed. (Academic Press Ltd., London, 1992), pp 280.

    Google Scholar 

  20. 20.

    C. Tallon and G.V. Franks: Recent trends in shape forming from colloidal processing: A review. J. Ceram. Soc. Jpn. 119(3), 147 (2011).

    CAS  Article  Google Scholar 

Download references


This work was financially supported by China National 863 Project (Grant No. 2009AA03Z440) and partly by 2011 Project of SICCAS—GuangSheng R&D Center for Rare Earth New Materials. The authors would like to thank Mr. Yoshihiro Yoshioka of Kuraray Polymer Co., Ltd. Japan for his helpful discussion and donation of Isobam 104# for this study. We also thank Prof. Hidehiro Kamiya, from Tokyo University of Agriculture and Technology, Japan for his helpful discussions.

Author information



Corresponding author

Correspondence to Shiwei Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, Y., Shimai, S. & Wang, S. Room-temperature gelcasting of alumina with a water-soluble copolymer. Journal of Materials Research 28, 1512–1516 (2013).

Download citation