Polyanion modulated evolution of perovskite BiFeO3 microspheres to microcubes by a microwave assisted hydrothermal method


In this work, the morphology of BiFeO3 was successfully modulated from microsphere to microcube by using a polyanion, poly (methyl vinyl ether-alt-maleic acid) (PMVEMA), in a microwave assisted hydrothermal route. A simple ultrasonic purification method has been developed to obtain pure phase BiFeO3 from the crude products without using any chemicals. X-ray diffraction results confirmed the capability of this purification method. When increasing the amount of PMVEMA, the morphology of BiFeO3 gradually changed from microsphere to microcube as illustrated by scanning electron microscopy. A mechanism was suggested for the morphology evolution of BiFeO3. After the formation of the small BiFeO3 single crystal, PMVEMA preferentially absorbed on one side of the crystals through specific and/or noncovalent interactions, resulting in the preferential integration of these crystals to form microcubes. The magnetic properties of these microcrystals were also investigated and the magnetization of the microcubes increased with the decrease of temperature.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.


  1. 1.

    E. Dagotto: PHYSICS. When oxides meet face to face. Science 318(5853), 1076 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    S.M. Wu, S.A. Cybart, P. Yu, M.D. Rossell, J.X. Zhang, R. Ramesh, and R.C. Dynes: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9(9), 756 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    M. Fiebig: Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38(8), R123 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    N.A. Spaldin and M. Fiebig: The renaissance of magnetoelectric multiferroics. Science 309(5733), 391 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    W. Eerenstein, N.D. Mathur, and J.F. Scott: Multiferroic and magnetoelectric materials. Nature 442(7104), 759 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig and R. Ramesh: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    G.A. Smolenskii and I. Chupis: Sov. Phys. Usp. 25, 475 (1982).

    Article  Google Scholar 

  8. 8.

    R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan and J.F. Scott: β phase and γ-β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77(1), 014110 (2008).

    Article  Google Scholar 

  9. 9.

    Y-H. Lin, Q. Jiang, Y. Wang, C-W. Nan, L. Chen, and J. Yu: Enhancement of ferromagnetic properties in BiFeO3 polycrystalline ceramic by La doping. Appl. Phys. Lett. 90(17), 172507 (2007).

    Article  Google Scholar 

  10. 10.

    S.O. Leontsev and R.E. Eitel: Origin and magnitude of the large piezoelectric response in the lead-free (1–x)BiFeO3–xBaTiO3 solid solution. J. Mater. Res. 26(01), 9 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    M. Yang: Fern-shaped bismuth dendrites electrodeposited at hydrogen evolution potentials. J. Mater. Chem. 21(9), 3119 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    J. Tang and A.P. Alivisatos: Crystal splitting in the growth of Bi2S3. Nano Lett. 6(12), 2701 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    X.Y. Zhang, C.W. Lai, X. Zhao, D.Y. Wang, and J.Y. Dai: Synthesis and ferroelectric properties of multiferroic BiFeO3 nanotube arrays. Appl. Phys. Lett. 87(14), 143102 (2005).

    Article  Google Scholar 

  14. 14.

    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, and S.S. Wong: Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7(3), 766 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    S.M. Selbach, T. Tybell, M.A. Einarsrud, and T. Grande: Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mater. 19(26), 6478 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    C. Chen, J. Cheng, S. Yu, L. Che, and Z. Meng: Hydrothermal synthesis of perovskite bismuth ferrite crystallites. J. Cryst. Growth 291(1), 135 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    J.L. Mi, T.N. Jensen, M. Christensen, C. Tyrsted, J.E. Jorgensen, and B.B. Iversen: High-temperature and high-pressure aqueous solution formation, growth, crystal structure, and magnetic properties of BiFeO3 nanocrystals. Chem. Mater. 23(5), 1158 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    S. Li, Y.H. Lin, B.P. Zhang, Y. Wang, and C.W. Nan: Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 114(7), 2903 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    L. Fei, J. Yuan, Y. Hu, C. Wu, J. Wang, and Y. Wang: Visible light responsive perovskite BiFeO3 pills and rods with dominant {111}c facets. Cryst. Growth Des. 11(4), 1049 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    U.A. Joshi, J.S. Jang, P.H. Borse, and J.S. Lee: Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 92(24), 242106 (2008).

    Article  Google Scholar 

  21. 21.

    X. Zhu, Q. Hang, Z. Xing, Y. Yang, J. Zhu, Z. Liu, N. Ming, P. Zhou, Y. Song, Z. Li, T. Yu and Z. Zou: Microwave hydrothermal synthesis, structural characterization, and visible-light photocatalytic activities of single-crystalline bismuth ferric nanocrystals. J. Am. Ceram. Soc. 94(8), 2688 (2011).

    CAS  Article  Google Scholar 

  22. 22.

    Q.J. Ruan and W.D. Zhang: Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation. J. Phys. Chem. C 113(10), 4168 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    X. Zhang, J. Lv, L. Bourgeois, J. Cui, Y. Wu, H. Wang, and P.A. Webley: Formation and photocatalytic properties of bismuth ferrite submicrocrystals with tunable morphologies. New J. Chem. 35(4), 937 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    M.S. Bernardo, T. Jardiel, M. Peiteado, A.C. Caballero, and M. Villegas: Reaction pathways in the solid state synthesis of multiferroic BiFeO3. J. Eur. Ceram. Soc. 31(16), 3047 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    Z. Wang, J. Zhu, W. Xu, J. Sui, H. Peng, and X. Tang: Microwave hydrothermal synthesis of perovskite BiFeO3 nanoparticles: An insight into the phase purity during the microwave heating process. Mater. Chem. Phys. 135(2–3), 330 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    X-Z. Chen, Z-C. Qiu, J-P. Zhou, G. Zhu, X-B. Bian, and P. Liu: Large-scale growth and shape evolution of bismuth ferrite particles with a hydrothermal method. Mater. Chem. Phys. 126(3), 560 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    J. Chen, X.R. Xing, A. Watson, W. Wang, R.B. Yu, J.X. Deng, L. Yan, C. Sun, and X.B. Chen: Rapid synthesis of multiferroic BiFeO3 single-crystalline nanostructures. Chem. Mater. 19(15), 3598 (2007).

    CAS  Article  Google Scholar 

  28. 28.

    G. Cao, H. Choi, H. Konishi, S. Kou, R. Lakes, and X. Li: Mg–6Zn/1.5%SiC nanocomposites fabricated by ultrasonic cavitation-based solidification processing. J. Mater. Sci. 43(16), 5521 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    S.R. Gonzalez-Avila, F. Prabowo, A. Kumar, and C-D. Ohl: Improved ultrasonic cleaning of membranes with tandem frequency excitation. J. Membr. Sci. 415–416(0), 776 (2012).

    Article  Google Scholar 

  30. 30.

    F.G.M. Ashokkumar: Ultrasound assisted chemical processes. Rev. Chem. Eng. 15, 41 (1999).

    CAS  Article  Google Scholar 

  31. 31.

    K.S. Suslick, S-B. Choe, A.A. Cichowlas, and M.W. Grinstaff: Sonochemical synthesis of amorphous iron. Nature 353(6343), 414 (1991).

    CAS  Article  Google Scholar 

  32. 32.

    J.C.O.P.D. Standards: Powder Diffraction File (PDF) (International Centre for Diffraction Data, Newtown Square, DE, 2004).

  33. 33.

    Y. Wang, G. Xu, L. Yang, Z. Ren, X. Wei, W. Weng, P. Du, G. Shen, and G. Han: Alkali metal ions-assisted controllable synthesis of bismuth ferrites by a hydrothermal method. J. Am. Ceram. Soc. 90(11), 3673 (2007).

    CAS  Article  Google Scholar 

  34. 34.

    C-J. Tsai, C-Y. Yang, Y-C. Liao, and Y-L. Chueh: Hydrothermally grown bismuth ferrites: controllable phases and morphologies in a mixed KOH/NaOH mineralizer. J. Mater. Chem. 22(34), 17432 (2012).

    CAS  Article  Google Scholar 

  35. 35.

    D.H. Busch and J.C. Bailar: The stereochemistry of complex inorganic compounds. Xvii. The stereochemistry of hexadentate ethylenediaminetetraacetic acid complexes. J. Am. Chem. Soc. 75(18), 4574 (1953).

    CAS  Article  Google Scholar 

  36. 36.

    K. Nakanishi: Infrared Absorption Spectroscopy (Holden Day, San Francisco, CA, 1977).

    Google Scholar 

  37. 37.

    G.V.S. Rao, C.N.R. Rao, and J.R. Ferraro: Infrared and electronic spectra of rare earth perovskites: Ortho-chromites, -manganites and -ferrites. Appl. Spectrosc. 24(4), 436 (1970).

    CAS  Article  Google Scholar 

  38. 38.

    W. Kaczmarek and A. Graja: Lattice dynamics study of the solid solution (Bi1−xLax) FeO3 by i.r. spectroscopy. Solid State Commun. 17(7), 851 (1975).

    CAS  Article  Google Scholar 

  39. 39.

    D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J.F. Marucco, and S. Fusil: Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals. Phys. Rev. B 76(2), 024116 (2007).

    Article  Google Scholar 

  40. 40.

    A. Jaiswal, R. Das, K. Vivekanand, P.M. Abraham, S. Adyanthaya, and P. Poddar: Effect of reduced particle size on the magnetic properties of chemically synthesized BiFeO3 nanocrystals. J. Phys. Chem. C 114(5), 2108 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, and J.M. Liu: Preparation and photoabsorption characterization of BiFeO3 nanowires. Appl. Phys. Lett. 89(10), 102506 (2006).

    Article  Google Scholar 

Download references


This work was supported by the State Key Basic Research Program of China (Grant No. 61176011), National Basic Research Project (Grant No. 2013CB922301), KLIFMD-2011-06, Shanghai Pujiang Program (Grant No. 11PJ1403000), Innovation Program of Shanghai Municipal Education Commission (Grant No. 12ZZ041), NCET-11-0143 and PCSIRT.

Author information



Corresponding authors

Correspondence to Hui Peng or Xiaodong Tang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Z., Xu, W., Peng, H. et al. Polyanion modulated evolution of perovskite BiFeO3 microspheres to microcubes by a microwave assisted hydrothermal method. Journal of Materials Research 28, 1498–1504 (2013). https://doi.org/10.1557/jmr.2013.130

Download citation