Growth of multiwall carbon nanocoils using Fe catalyst films prepared by ion sputtering


Carbon nanocoils (CNCs) with different diameters have been synthesized on different substrates by thermal chemical vapor deposition using Fe films as catalysts prepared by ion sputtering. It is found that CNCs with diameters greater than 100 nm are obtained as the main products in large quantities on Fe film coated indium tin oxide substrates. However, on Fe film coated SiO2 substrates, multiwall CNCs (MWCNCs) along with carbon nanotubes (CNTs) are grown, and the yield of MWCNCs is decreased rapidly with a lower Fe film thickness. The as-grown MWCNCs with observed coil diameters less than 100 nm and filament diameters less than 30 nm are much thinner than the conventional CNCs. Plate-like catalyst particles with sizes much larger than the filament diameter of the MWCNCs are observed at the roots of these MWCNCs, indicating a base growth mechanism. Furthermore, it is also observed that large particles with irregular shapes lead to the growth of helical MWCNCs, while large particles with steady circular shapes tend to grow as straight CNTs. Based on the experimental results, a growth model for MWCNCs is proposed.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.


  1. 1.

    F. Cervantes-Sodi, J.J. Vilatela, J.A. Jimenez-Rodriguez, L.G. Reyes-Gutierrez, S. Rosas-Melendez, A. Iniguez-Rabago, M. Ballesteros-Villarreal, E. Palacios, G. Reiband, and M. Terrones: Carbon nanotube bundles self-assembled in double helix microstructures. Carbon 50(10), 3688 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    M.Q. Zhao, J.Q. Huang, Q. Zhang, J.Q. Nie, and F. Wei: Stretchable single-walled carbon nanotube double helices derived from molybdenum-containing layered double hydroxides. Carbon 49(6), 2148 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Q. Zhang, M.Q. Zhao, D.M. Tang, F. Li, J.Q. Huang, B. Liu, W.C. Zhu, Y.H. Zhang, and F. Wei: Carbon-nanotube-array double helices. Angew. Chem. Int. Ed. 49(21), 3642 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    K.T. Lau, M. Lu, and D. Hui: Coiled carbon nanotubes: Synthesis and their potential applications in advanced composite structures. Composites Part B 37(6), 437 (2006).

    Article  CAS  Google Scholar 

  5. 5.

    D.J. Bell, L. Dong, B.J. Nelson, M. Golling, L. Zhang, and D. Grutzmacher: Fabrication and characterization of three-dimensional InGaAs/GaAs nanosprings. Nano Lett. 6(4), 725 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao, and Z.L. Wang: Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309(5741), 1700 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    R. Kanada, L. Pan, S. Akita, N. Okazaki, K. Hirahara, and Y. Nakayama: Synthesis of multiwalled carbon nanocoils using codeposited thin film of Fe-Sn as catalyst. Jpn. J. Appl. Phys. 47(4), 1949 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    X. Jian, M. Jiang, Z.W. Zhou, Q. Zeng, J. Lu, D.C. Wang, J.T. Zhu, J.H. Gou, Y. Wang, D. Hui, and M.L. Yang: Gas-induced formation of Cu nanoparticle as catalyst for high-purity straight and helical carbon nanofibers. ACS Nano 6(10), 8611 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    T. Hayashida, L. Pan, and Y. Nakayama: Mechanical and electrical properties of carbon tubule nanocoils. Physica B 323(1–4), 352 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    D-W. Li, L-J. Pan, D-P. Liu, and N-S. Yu: Relationship between geometric structures of catalyst particles and growth of carbon nanocoils. Chem. Vap. Deposition 16(4–6), 166 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    X.Q. Chen, S.L. Zhang, D.A. Dikin, W.Q. Ding, R.S. Ruoff, L.J. Pan, and Y. Nakayama: Mechanics of a carbon nanocoil. Nano Lett. 3(9), 1299 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    M.M.J. Treacy, T.W. Ebbesen, and J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584), 678 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    A. Volodin, D. Buntinx, M. Ahlskog, A. Fonseca, J.B. Nagy, and C. Van Haesendonck: Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett. 4(9), 1775 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    X.F. Li, K.T. Lau, and Y.S. Yin: Mechanical properties of epoxy-based composites using coiled carbon nanotubes. Compos. Sci. Technol. 68(14), 2876 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    D.L. Zhao and Z.M. Shen: Preparation and microwave absorption properties of carbon nanocoils. Mater. Lett. 62(21–22), 3704 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    D.W. Li and L.J. Pan: Growth of carbon nanocoils using Fe–Sn–O catalyst film prepared by a spin-coating method. J. Mater. Res. 26(16), 8 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    N. Okazaki, S. Hosokawa, T. Goto, and Y. Nakayama: Synthesis of carbon tubule nanocoils using Fe-In-Sn-O fine particles as catalysts. J. Phys. Chem. B 109(37), 17366 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    L.J. Pan, M. Zhang, and Y. Nakayama: Growth mechanism of carbon nanocoils. J. Appl. Phys. 91(12), 10058 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    C. Kuzuya, W. In-Hwang, S. Hirako, Y. Hishikawa, and S. Motojima: Preparation, morphology, and growth mechanism of carbon nanocoils. Chem. Vap. Deposition 8(2), 57 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    C.C. Su and S.H. Chang: Radial growth of carbon nanocoils on stainless steel wires coated with tin particles using chemical vapor deposition from acetylene. Mater. Lett. 65(7), 1114 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    D.W. Li, L.J. Pan, J.J. Qian, and D.P. Liu: Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol-gel method. Carbon 48(1), 170 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    L.J. Pan, T. Hayashida, and Y. Nakayama: Growth and density control of carbon tubule nanocoils using catalyst of iron compounds. J. Mater. Res. 17(1), 145 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    J. Liu and A.T. Harris: Synthesis of coiled carbon nanotubes on Co/Al2O3 catalysts in a fluidised-bed. J. Nanopart. Res. 12(2), 645 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    H. Haoqing, J. Zeng, F. Weller, and A. Greiner: Large-scale synthesis and characterization of helically coiled carbon nanotubes by use of Fe(CO)5 as floating catalyst precursor. Chem. Mater. 15(16), 3170 (2003).

    Article  CAS  Google Scholar 

  25. 25.

    X.B. Zhang, X.F. Zhang, D. Bernaerts, G.T. Vantendeloo, S. Amelinckx, J. Vanlanduyt, V. Ivanov, J.B. Nagy, P. Lambin, and A.A. Lucas: The texture of catalytically grown coil-shaped carbon nanotubes. Europhys. Lett. 27(2), 141 (1994).

    CAS  Article  Google Scholar 

  26. 26.

    V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Vantendeloo, S. Amelinckx, and J. Vanlanduyt: The study of carbon nanotubules produced by catalytic method. Chem. Phys. Lett. 223(4), 329 (1994).

    CAS  Article  Google Scholar 

  27. 27.

    S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, and J.B. Nagy: A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265(5172), 635 (1994).

    CAS  Article  Google Scholar 

  28. 28.

    M. Lu, K.T. Lau, J.C. Xu, and H.L. Li: Coiled carbon nanotubes growth and DSC study in epoxy-based composites. Colloids Surf., A 257–258, 339 (2005).

    Article  CAS  Google Scholar 

  29. 29.

    N. Tsuchiya and T. Ogino: Morphology of carbon nanostructures in alcohol chemical vapor deposition. Jpn. J. Appl. Phys. 46(9A), 6091 (2007).

    CAS  Article  Google Scholar 

  30. 30.

    M. Yokota, Y. Suda, H. Takikawa, H. Ue, K. Shimizu, and Y. Umeda: Structural analysis of multi-walled carbon nanocoils synthesized with Fe-Sn catalyst supported on zeolite. J. Nanosci. Nanotechnol. 11(3), 2344 (2011).

    CAS  Article  Google Scholar 

  31. 31.

    X.Q. Chen, S.M. Yang, S. Motojima, and M. Ichihara: Morphology and microstructure of twisting nano-ribbons prepared using sputter-coated Fe-base alloy catalysts on glass substrates. Mater. Lett. 59(7), 854 (2005).

    CAS  Article  Google Scholar 

  32. 32.

    Q. Wen, T. Tian, W.Z. Qian, L. Hu, S. Yun, A.Y. Cao, and F. Wei: Synthesis of vertically aligned CNTs with hollow channel on Al2O3-Al substrate electroplated with fe nanoparticles. J. Electrochem. Soc. 155(10), K180 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    G.Y. Xiong, D.Z. Wang, and Z.F. Ren: Aligned millimeter-long carbon nanotube arrays grown on single crystal magnesia. Carbon 44(5), 969 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    S. Hofmann, M. Cantoro, B. Kleinsorge, C. Casiraghi, A. Parvez, J. Robertson, and C. Ducati: Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth. J. Appl. Phys. 98(3), 034308 (2005).

    Article  CAS  Google Scholar 

  35. 35.

    A.J. Hart and A.H. Slocum: Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst. J. Phys. Chem. B 110(16), 8250 (2006).

    CAS  Article  Google Scholar 

  36. 36.

    G. Zhang, D. Mann, L. Zhang, A. Javey, Y. Li, E. Yenilmez, Q. Wang, J.P. McVittie, Y. Nishi, J. Gibbons, and H. Dai: Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proc. Natl. Acad. Sci. U.S.A. 102(45), 16141 (2005).

    CAS  Article  Google Scholar 

  37. 37.

    M. Shajahan, Y.H. Mo, A. Kibria, M.J. Kim, and K.S. Nahm: High growth of SWNTs and MWNTs from C2H2 decomposition over Co-Mo/MgO catalysts. Carbon 42(11), 2245 (2004).

    CAS  Article  Google Scholar 

  38. 38.

    Y.Y. Wei, G. Eres, V.I. Merkulov, and D.H. Lowndes: Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Appl. Phys. Lett. 78(10), 1394 (2001).

    CAS  Article  Google Scholar 

  39. 39.

    J. Maultzsch, S. Reich, C. Thomsen, S. Webster, R. Czerw, D.L. Carroll, S.M.C. Vieira, P.R. Birkett, and C.A. Rego: Raman characterization of boron-doped multiwalled carbon nanotubes. Appl. Phys. Lett. 81(14), 2647 (2002).

    CAS  Article  Google Scholar 

  40. 40.

    L.P. Biro, G.I. Mark, and P. Lambin: Regularly coiled carbon nanotubes. IEEE Trans. Nanotechnol. 2(4), 362 (2003).

    Article  Google Scholar 

  41. 41.

    A. Fonseca, K. Hernadi, J.B. Nagy, P. Lambin, and A.A. Lucas: Model structure of perfectly graphitizable coiled carbon nanotubes. Carbon 33(12), 1759 (1995).

    CAS  Article  Google Scholar 

  42. 42.

    D.W. Li and L.J. Pan: Necessity of base fixation for helical growth of carbon nanocoils. J. Mater. Res. 27(2), 431 (2012).

    Article  CAS  Google Scholar 

  43. 43.

    J. Qian, L. Pan, D. Li, N. Yu, and D. Liu: Formation of catalyst particles for carbon nanocoil growth. J. Nanosci. Nanotechnol. 10(11), 7366 (2010).

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant Nos. 51072027 and 11274055) and the Fundamental Research Funds for the Central Universities (Grant No. DUT12ZD204).

Author information



Corresponding author

Correspondence to Lujun Pan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, D., Pan, L., Liu, K. et al. Growth of multiwall carbon nanocoils using Fe catalyst films prepared by ion sputtering. Journal of Materials Research 28, 1316–1325 (2013).

Download citation