Mechanical properties of highly porous alumina foams

Abstract

The mechanical properties of porous ceramics are greatly influenced by their microstructure. Therefore, mechanical behavior of highly porous ceramics is different from that of dense ceramics. In this work, we evaluate different mechanical testing methods such as static compression, Brazilian disc test and 3-point bending on their suitability for comparison of highly porous ceramic materials. It is shown that 3-point bending is more suitable than static compression or Brazilian disc testing, as the material exhibits no critical crack propagation under compressive loading. With 3-point bending tests, a quantitative comparison of the mechanical properties of foams with different microstructures and porosities is possible. Under cyclic compression the foams exhibit a very high degree of crack tolerance in combination with preservation of their structural integrity even at high strains of 10%.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
FIG. 4.
FIG. 5.

References

  1. 1.

    A. Pyzik, R. Ziebarth, C. Han, and K. Yang: High-porosity acicular mullite ceramics for multifunctional diesel particulate filters. Int. J. Appl. Ceram. Technol. 8(5), 1059–1066 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    J.C. Blome: Molten metal filter. U.S. Patent No 4265659, May 5, 1981.

  3. 3.

    A.R. Studart, U.T. Gonzenbach, E. Tervoort, and L.J. Gauckler: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89(6), 1771–1789 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    K. Schwartzwalder and A.V. Somers: Method of making porous ceramic articles. U.S. Patent No 3090094, 1963.

  5. 5.

    K.W. Schlichting, N.P. Padture, and P.G. Klemens: Thermal conductivity of dense and porous yttria-stabilized zirconia. J. Mater. Sci. 36(12), 3003–3010 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    U.T. Gonzenbach, A.R. Studart, E. Tervoort, and L.J. Gauckler: Macroporous ceramics from particle-stabilized wet foams. J. Am. Ceram. Soc. 90(1), 16–22 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    L.J. Gibson and M.F. Ashby: Cellular Solids Structure and Properties (Cambridge University Press, Cambridge, UK, 1997).

    Google Scholar 

  8. 8.

    C.Q. Dam, R. Brezny, and D.J. Green: Compressive behavior and deformation-mode map of an open cell alumina. J. Mater. Res. 5(1), 163–171 (1990).

    CAS  Article  Google Scholar 

  9. 9.

    R. Brezny and D.J. Green: The effect of cell-size on the mechanical-behavior of cellular materials. Acta Metall. Mater. 38(12), 2517–2526 (1990).

    CAS  Article  Google Scholar 

  10. 10.

    ASTM C1161: Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature. Standard (2002).

    Google Scholar 

  11. 11.

    ASTM C1674: Standard Test Method for Flexural Strength of Advanced Ceramics with Engineered Porosity (Honeycomb Cellular Channels) at Ambient Temperatures. Standard (2011).

    Google Scholar 

  12. 12.

    ASTM C1424: Standard Test Method for Monotonic Compressive Strength of Advanced Ceramics at Ambient Temperature. Standard (2010).

    Google Scholar 

  13. 13.

    ASTM C1326: Standard Test Method for Knoop Indentation Hardness of Advanced Ceramics. Standard (2008).

    Google Scholar 

  14. 14.

    ASTM C1327: Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics. Standard (2008).

    Google Scholar 

  15. 15.

    A. Borger, P. Supancic, and R. Danzer: The ball on three balls test for strength testing of brittle discs: Stress distribution in the disc. J. Eur. Ceram. Soc. 22(9–10), 1425–1436 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    R. Danzer, P. Supancic, and W. Harrer: Biaxial tensile strength test for brittle rectangular plates. J. Ceram. Soc. Jpn. 114(1335), 1054–1060 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    H. Fessler and D.C. Fricker: A theoretical analysis of the ring-on-ring loading disk test. J. Am. Ceram. Soc. 67(9), 582–588 (1984).

    Article  Google Scholar 

  18. 18.

    H. Fessler and D.C. Fricker: Multiaxial strength tests for brittle materials. J. Strain Anal. Eng. Des. 19(3), 197–208 (1984).

    Article  Google Scholar 

  19. 19.

    C. Rasch and W. Kollenberg: A modified “Brazilian” disk test - an indirect method to determine the tensile strength of ceramics. 48. Internationales Feuerfest-Kolloquium. (2005).

    Google Scholar 

  20. 20.

    U.T. Gonzenbach, A.R. Studart, E. Tervoort, and L.J. Gauckler: Ultrastable particle-stabilized foams. Angew. Chem. Int. Ed. 45(21), 3526–3530 (2006).

    CAS  Article  Google Scholar 

  21. 21.

    U.T. Gonzenbach, A.R. Studart, E. Tervoort, and L.J. Gauckler: Stabilization of foams with inorganic colloidal particles. Langmuir 22(26), 10983–10988 (2006).

    CAS  Article  Google Scholar 

  22. 22.

    U.T. Gonzenbach, A.R. Studart, D. Steinlin, E. Tervoort, and L.J. Gauckler: Processing of particle-stabilized wet foams into porous ceramics. J. Am. Ceram. Soc. 90(11), 3407–3414 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    U.T. Gonzenbach, A.R. Studart, E. Tervoort, and L.J. Gauckler: Tailoring the microstructure of particle-stabilized wet foams. Langmuir 23(3), 1025–1032 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    B.S.M. Seeber, U.T. Gonzenbach, U. Ebneter, and L.J. Gauckler: Microstructural analysis of highly porous alumina foams, to be submitted.

  25. 25.

    P. Colombo, A. Arcaro, A. Francesconi, D. Pavarin, D. Rondini, and S. Debei: Effect of hypervelocity impact on microcellular ceramic foams from a preceramic polymer. Adv. Eng. Mater. 5(11), 802–805 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mario Mücklich for his help with the sample preparation, Peter Kocher and Linus Ender for their help with the mechanical measurements as well as the Commission for Technology and Innovation CTI, Switzerland, for the financial contribution.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benedikt Simon Michael Seeber.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Seeber, B.S.M., Gonzenbach, U.T. & Gauckler, L.J. Mechanical properties of highly porous alumina foams. Journal of Materials Research 28, 2281–2287 (2013). https://doi.org/10.1557/jmr.2013.102

Download citation