Skip to main content
Log in

Effects of disordered structure on thermoelectric properties of LaCeFe3CoSb12 nanocomposites

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To improve the thermoelectric properties of LaCeFe3CoSb12 skutterudite materials, the LaCeFe3CoSb12 nanopowders of disordered structure were fabricated through a laser melting and quenching process and then were hot pressed into bulk pellets with the coexistence of ordered and disordered structures by mixing the disordered powders with the raw LaCeFe3CoSb12 crystalline materials. The results suggest that the introduced disordered structure can increase Seebeck coefficient from 57 to 179 μV/K while reduce thermal conductivity from 3.1 to 1.5 W/(m·K), although electrical conductivity can be decreased from 98,000 to 43,000 S/m, and consequently, figure of merit can be enhanced from 0.11 to 0.90 at 773 K. Therefore, fabricating a material with the coexistence of disordered and ordered structures can be considered as an effective way to obtain a high figure of merit, and this strategy can be also applied to other thermoelectric alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. L.E. Bell: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1462 (2008).

    Article  CAS  Google Scholar 

  2. G.S. Nolas, J. Yang, and H. Takizawa: Transport properties of germanium-filled CoSb3. Appl. Phys. Lett. 84, 5210–5211 (2004).

    Article  CAS  Google Scholar 

  3. G.A. Lamberton, J.R.H. Tedstrom, T.M. Tritt, and G.S. Nolas: Thermoelectric properties of Yb-filled Ge-compensated CoSb3 skutterudite materials. J. Appl. Phys. 97, 113715 (2005).

    Article  Google Scholar 

  4. P.C. Zhai, W.Y. Zhao, Y. Li, L.S. Liu, X.F. Tang, Q.J. Zhang, and M. Niino: Nanostructures and enhanced thermoelectric properties in Ce-filled skutterudite bulk materials. Appl. Phys. Lett. 89-90, 052111 (2006).

    Article  Google Scholar 

  5. H. Li, X.F. Tang, X.L. Su, and Q.J. Zhang: Preparation and thermoelectric properties of high-performance Sb additional Yb0.2Co4Sb12+y bulk materials with nanostructure. Appl. Phys. Lett. 92-93, 202114 (2008).

    Article  Google Scholar 

  6. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554–558 (2008).

    Article  CAS  Google Scholar 

  7. A. Majumdar: Thermoelectricity in semiconductor nanostructures. Science 306, 777–778 (2004).

    Article  Google Scholar 

  8. G.J. Snyde and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  Google Scholar 

  9. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis: Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818–822 (2004).

    Article  CAS  Google Scholar 

  10. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, and D. Vashaee: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634–639 (2008).

    Article  CAS  Google Scholar 

  11. X.X. Ni, G.C. Liang, J.S. Wang, and B.W. Li: Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons. Appl. Phys. Lett. 95, 192114 (2009).

    Article  Google Scholar 

  12. T.J. Zhu, F. Yan, X.B. Zhao, S.N. Zhang, Y. Chen, and S.H. Yang: Preparation and thermoelectric properties of bulk in situ nanocomposites with amorphous/nanocrystal hybrid structure. J. Phys. D: Appl. Phys. 40, 6094–6097 (2007).

    Article  CAS  Google Scholar 

  13. S.K. Hsiung and R. Wang: Thermoelectric properties of splat-cooled amorphous In20Te80, Ga20Te80, and Ge15Te85. J. Appl. Phys. 49, 280–284 (1978).

    Article  CAS  Google Scholar 

  14. P.X. Lu, Z.G. Shen, and X. Hu: Effects of solvents and Sb sources on the morphologies of LaFe3CoSb12 nanopowders made by the hydro/solvo thermal method. J. Mater. Res. 24, 2873–2879 (2009).

    Article  CAS  Google Scholar 

  15. J.M. Ziman: A theory of the electrical properties of liquid metals. Philos. Mag. 6, 1013–1034 (1961).

    Article  CAS  Google Scholar 

  16. N.F. Mott: The electrical resistivity of liquid transition metals. Philos. Mag. 26, 1249–1261 (1972).

    Article  CAS  Google Scholar 

  17. J.S. Dugdale: The Electrical Properties of Disordered Metals. (Cambridge University Press, Cambridge, 1995).

    Book  Google Scholar 

  18. B.C. Sales, D. Mandrus, and R.K. Williams: Filled skutterudite antimondites: A new class of thermoelectric materials. Science 272, 1325–1328 (1996).

    Article  CAS  Google Scholar 

  19. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang: Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Appl. Phys. Lett. 92, 182101 (2008).

    Article  Google Scholar 

Download references

Acknowledgment

The author (M.L.) would acknowledge financial supports by Henan University of Technology under Grant No. 2011BS056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengxian Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, P., Lu, M., Qu, L. et al. Effects of disordered structure on thermoelectric properties of LaCeFe3CoSb12 nanocomposites. Journal of Materials Research 27, 1518–1521 (2012). https://doi.org/10.1557/jmr.2012.90

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.90

Navigation