Cost-effective waste heat recovery using thermoelectric systems

Abstract

Optimizing thermoelectric (TE) materials and modules are important factors, which can lead to widespread adoption of waste heat recovery systems. The analytic co-optimization of the TE leg, heat sink, and the load resistance shows that all parameters entering the figure-of-merit (Z) do not have the same impact on cost/performance trade-off. Thermal conductivity of the TE material plays a more important role than the power factor. This study also explores the impact of heat losses and the required contact resistances. Finally, we present the theoretical cost performance ($/W) of TE waste heat recovery systems for vehicle waste heat recovery application, assuming hot side gas temperature of 600 °C and a cooling water temperature of 60 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Energy Technology Cost and Performance Data, National Renewable Energy Laboratory Report. http://www.nrel.gov/analysis/tech_costs.html. (accessed September 29, 2011).

  2. 2.

    T.J. Hendricks: Thermal system interactions in optimizing advanced thermoelectric energy recovery systems. J. Energy Res. Technol. 129 (3), 231 (2007).

    Article  Google Scholar 

  3. 3.

    L.E. Bell: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321 (5895), 1461 (2008).

    Article  Google Scholar 

  4. 4.

    J. Yang: Potential applications of thermoelectric waste heat recovery in the automotive industry. In Proceedings of International Conference on Thermoelectrics, 2005; pp. 170–174.

    Google Scholar 

  5. 5.

    A. Eder and M. Linde: Efficient and Dynamic–The BMW Group Roadmap for the Application of Thermoelectric Generators, U.S. Department of Energy Thermoelectric Applications Workshop, online material, 2007.http://www1.eere.energy.gov/vehiclesandfuels/pdfs/thermoelectrics_app_2011/monday/eder.pdf. (accessed September 29, 2011).

    Google Scholar 

  6. 6.

    Q.E. Hussain, D.R. Brigham, and C.W. Maranville: Thermoelectric exhaust heat recovery for hybrid vehicles. In Proceedings of SAE World Congress & Exhibition, 2009; p. 2009–01-1327.

    Google Scholar 

  7. 7.

    C. Vining: An inconvenient truth about thermoelectrics. Nat. Mater. 8, 85 (2009).

    Article  Google Scholar 

  8. 8.

    G. Homm and P.J. Klar: Thermoelectric materials—compromising between high efficiency and materials abundance. Phys. Status Solidi-R 5 (9), 331 (2011).

    Article  Google Scholar 

  9. 9.

    J. Tang, H. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang: Holey silicon as an efficient thermoelectric material. Nano Lett. 10 (10), 4283 (2010).

    Article  Google Scholar 

  10. 10.

    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov: Highly effective Mg2Si1-xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  11. 11.

    A. Shakouri: Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 431 (2011).

    Article  Google Scholar 

  12. 12.

    K. Yazawa and A. Shakouri: Cost-efficiency trade-off and the design of thermoelectric power generators, environmental science & technology. Env. Sci. and Tech. 45 (17), 7553 (2011).

    Article  Google Scholar 

  13. 13.

    K. Yazawa and A. Shakouri: Asymmetric thermodynamic behavior of thermoelectric power generation. J. Appl. Phys. 111, 024509 (2012).

    Article  Google Scholar 

  14. 14.

    T.E. Humphrey and H. Linke: Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    X. He, Y. Li, L. Wang, Y. Sun, and S. Zhang: High emissivity coatings for high temperature application: Progress and prospect. Thin Solid Films 517, 5129 (2009).

    Google Scholar 

  16. 16.

    L.N. Aksyutov: Normal spectral emissivity of gold platinum and tungsten. J. Eng. Phys. Thermophys. 27 (2), 917 (1974).

    Google Scholar 

  17. 17.

    A.G. Maki and E.K. Plyler: Method of measuring emissivities of metals in the infrared. J. Res. Natl. Bur. Stand. 66C (3), 296 (1962).

    Google Scholar 

  18. 18.

    J.A. Potkay, G.R. Lambertus, R.D. Sacks, and K.D. Wise: A low-power pressure- and temperature-programmable micro gas chromatography column. J. Microelectromech. Syst. 16 (5), 1079 (2007).

    Article  Google Scholar 

Download references

Acknowledgment

Authors would like to acknowledge the U.S. Department of Energy (DOE) Office of Science - Energy Frontier Research Centers (EFRC), Center of Energy Efficient Materials, and the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) for financial support of this research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazuaki Yazawa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yazawa, K., Shakouri, A. Cost-effective waste heat recovery using thermoelectric systems. Journal of Materials Research 27, 1211–1217 (2012). https://doi.org/10.1557/jmr.2012.79

Download citation