Concentration effect of BMIMTf on P(VdF-HFP)/MgTf-based solid polymer electrolyte system

Abstract

Solid polymer electrolytes (SPEs) with poly(vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] as polymer host, doped with magnesium trifluoromethanesulfonate (MgTf) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMTf) have been synthesized via solution casting method. This P(VdF-HFP)/MgTf/BMIMTf-based SPE achieves ~ 3 × 10-3 and ~] 7 × 10-3 S cm-1 at 30 and 80 °C, respectively, with 75 part by weight (pbw) of BMIMTf. At the same time, they are also examined by means of frequency-dependent conductivity, dielectric permittivity, and dielectric modulus studies. Scanning electron microscopy reveals drastic morphological changes on SPE with small amount of BMIMTf. Even though it gradually changes back to its undoped state with higher concentration, it appears to be swollen. Examination on relationship between ionic conductivity and crystallinity by differential scanning calorimetry technique shows inconsistency at concentration higher than 75 pbw. This observation is related to greater ion–ion interaction due to excessive BMIMTf. Photoluminescence is also used to detect structural alterations in the local environment of SPE.

This is a preview of subscription content, access via your institution.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

References

  1. 1.

    R.A. Silva, G.G. Silva, R.L. Moreira, and M.A. Pimenta: The effects of salt concentration on cation complexation in triblock-polyether electrolyte. Phys. Chem. Chem. Phys. 5, 2424 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    I-D. Wu and F-C. Chang: Determination of the interaction within polyester-based solid polymer electrolyte using FTIR spectroscopy. Polymer 48, 989 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    V.D. Noto, M. Vittadello, S. Lavina, M. Fauri, and S. Biscazzo: Mechanism of ionic conductivity in poly(ethyleneglycol 400)/(LiCl)x electrolytic complexes: Studies based on electrical spectroscopy. J. Phys. Chem. B 105, 4584 (2001).

    Article  CAS  Google Scholar 

  4. 4.

    A. Brazier, G.B. Appetecchi, S. Passerini, A.S. Vuk, R. Orel, F. Donsanti, and F. Decker: Ionic liquids in electrochromic devices. Electrochim. Acta 52, 4792 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    Z.H. Li, H.P. Zhang, P. Zhang, G.C. Li, Y.P. Wu, and X.D. Zhou: Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. J. Membr. Sci. 322, 418 (2008).

    Google Scholar 

  6. 6.

    K-M. Lee, V. Suryanarayanan, and K-C. Ho: A photo-physical and electrochemical impedance spectroscopy study on the quasi-solid state dye-sensitized solar cells based on poly(vinylidene fluoride-co-hexafluoropropylene). J. Power Sources 185, 1605 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    J. Reiter, O. Krejza, and M. Sedlaříková: Electrochemical devices employing methacrylate-based polymer electrolytes. Sol. Energy Mater. Sol. Cells 93, 249 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    S-K. Jeong, Y-K. Jo, and N-J. Jo: Decoupled ion conduction mechanism of poly(vinyl alcohol) based Mg-conducting solid polymer electrolyte. Electrochim. Acta 52, 1549 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    K. Perera, M.A.K.L. Dissanayake, and P.W.S.K. Bandaranayake: Ionic conductivity of a gel polymer electrolyte based on Mg(ClO4)2 and polyacrylonitrile (PAN). Mater. Res. Bull. 39, 1745 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    G.G. Kumar and N. Munichandraiah: Solid-state rechargeable magnesium cell with poly(vinylidenefluoride)-magnesium triflate gel polymer electrolyte. J. Power Sources 102, 46 (2001).

    CAS  Article  Google Scholar 

  11. 11.

    D.F. Vieira, C.O. Avellaneda, and A. Pawlicka: Conductivity study of a gelatine-based polymer electrolyte. Electrochim. Acta 53, 1404 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    J. Fuller, A.C. Breda, and R.T. Carlin: Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids. J. Electroanal. Chem. 459, 29 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    R. Marcilla, F. Alcaide, H. Sardon, J.A. Pomposo, C. Pozo-Gonzalo, and D. Mecerreyes: Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochemical devices. Electrochem. Commun. 8, 482 (2006).

    CAS  Article  Google Scholar 

  14. 14.

    J. Reiter, J. Vondrák, J. Michálek, and Z. Mićka: Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents. Electrochim. Acta 52, 1398 (2006).

    CAS  Article  Google Scholar 

  15. 15.

    B. Singh, M.S. Hundal, G-G. Park, J-S. Park, W-Y. Lee, C-S. Kim, K. Yamada, and S.S. Sekhon: Non-aqueous polymer electrolytes containing room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium tetrafluoroborate. Solid State Ionics 178, 1404 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    P.K. Singh, K-W. Kim, and H-W. Rhee: Electrical, optical and photoelectrochemical studies on a solid PEO-polymer electrolyte doped with low viscosity ionic liquid. Electrochem. Commun. 10, 1769 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    D. Chen, Q. Zhang, G. Wang, H. Zhang, and J.H. Li: A novel composite polymer electrolyte containing room-temperature ionic liquids and heteropolyacids for dye-sensitized solar cells. Electrochem. Commun. 9, 2755 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    S. Ramesh and M.F. Chai: Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)–lithium triflate polymer electrolytes. Mater. Sci. Eng., B 139, 240 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    M.J. Reddy and P.P. Chu: Effect of Mg2+ on PEO morphology and conductivity. Solid State Ionics 149, 115 (2002).

    Article  Google Scholar 

  20. 20.

    M.J. Reddy and P.P. Chu: Ion pair formation and its effect in PEO:Mg solid polymer electrolyte system. J. Power Sources 109, 340 (2002).

    Article  Google Scholar 

  21. 21.

    R. Gregorio Jr. and D.S. Borges: Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer 49, 4009 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    A.S.A. Khiar, R. Puteh, and A.K. Arof: Conductivity studies of a chitosan-based polymer electrolyte. Physica B 373, 23 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    J.J. Xu, H. Ye, and J. Huang: Novel zinc ion conducting polymer gel eletrolytes based on ionic liquids. Electrochem. Commun. 7, 1309 (2005).

    CAS  Article  Google Scholar 

  24. 24.

    S. Ramesh and K.C. Wong: Conductivity, dielectric behaviour and thermal stability studies of lithium ion dissociation in poly(methyl methacrylate)-based gel polymer electrolytes. Ionics 15, 249 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    M. Venkateswarlu and N. Satyanarayana: AC conductivity studies of silver based fast ion conducting glassy materials for solid state batteries. Mater. Sci. Eng., B 54, 189 (1998).

    Article  Google Scholar 

  26. 26.

    J.R. Dygas, B. Misztal-Faraj, Z. Florjańczyk, F. Krok, M. Marzantowicz, and E. Zygadło-Monikowska: Effects of inhomogeneity on ionic conductivity and relaxations in PEO and PEO–salt complexes. Solid State Ionics 157, 249 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, and R.S. Katiyar: Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO–LiCF3SO3): Ionic conductivity and dielectric relaxation. Solid State Ionics 179, 689 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    S. Ramesh and K.Y. Ng: Characterization of polymer electrolytes based on high molecular weight PVC and Li2SO4. Curr. Appl. Phys. 9, 329 (2009).

    Article  Google Scholar 

  29. 29.

    R. Baskaran, S. Selvasekarapandian, G. Hirankumar, and M.S. Bhuvaneswari: Vibrational, ac impedance and dielectric spectroscopic studies of poly(vinylacetate)–N,N–dimethylformamide–LiClO4 polymer gel electrolytes. J. Power Sources 134, 235 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    A. Awadhia, S.K. Patel, and S.L. Agrawal: Dielectric investigations in PVA based gel electrolytes. Prog. Cryst. Growth Charact. Mater. 52, 61 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    M.H. Buraidah, L.P. Teo, S.R. Majid, and A.K. Arof: Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B 404, 1373 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    S. Ramesh, F.Y. Tai, and J.S. Chia: Conductivity and FTIR studies on PEO–LiX [X: CF3SO3, SO42−] polymer electrolytes. Spectrochim. Acta Part A 69, 670 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Z. Osman, Z.A. Ibrahim, and A.K. Arof: Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes. Carbohydr. Polym. 44, 167 (2001).

    CAS  Article  Google Scholar 

  34. 34.

    R. Mishra, N. Baskaran, P.A. Ramakrishna, and K.J. Rao: Lithium ion conduction in extreme polymer in salt regime. Solid State Ionics 112, 261 (1998).

    CAS  Article  Google Scholar 

  35. 35.

    M.Z.A. Yahya and A.K. Arof: Conductivity and x-ray photoelectron studies on lithium acetate doped chitosan films. Carbohydr. Polym. 55, 95 (2004).

    CAS  Article  Google Scholar 

  36. 36.

    A.M. Elmér, B. Wesslén, P. Sommer-Larsen, K. West, H. Hassender, and P. Jannasch: Ion conductive electrolyte membranes based on co-continuous polymer blends. J. Mater. Chem. 13, 2168 (2003).

    Article  Google Scholar 

  37. 37.

    G.C. Li, P. Zhang, H.P. Zhang, L.C. Yang, and Y.P. Wu: A porous polymer electrolyte based on P(VDF-HFP) prepared by a simple phase separation process. Electrochem. Commun. 10, 1883 (2008).

    CAS  Article  Google Scholar 

  38. 38.

    S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, and Å. Wendsjö: Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407 (2001).

    CAS  Article  Google Scholar 

  39. 39.

    V. Aravindan, P. Vickramen, and T. Prem Kumar: Polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3. J. Non-Cryst. Solids 354, 3451 (2008).

    CAS  Article  Google Scholar 

  40. 40.

    J.S. Lee, T. Nohira, and R. Hagiwara: Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell. J. Power Sources 171, 536 (2007).

    Google Scholar 

  41. 41.

    K-S. Ji, H-S. Moon, J-W. Kim, and J-W. Park:Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes. J. Power Sources 117, 124 (2003).

    CAS  Article  Google Scholar 

  42. 42.

    S.W. Choi, S.M. Jo, W.S. Lee, and Y-R. Kim: An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv. Mater. 15, 2027 (2003).

    CAS  Article  Google Scholar 

  43. 43.

    P.K. Singh, K-W. Kim, and H-W. Rhee: Development of characterization of ionic liquid doped solid polymer electrolyte membrane for battery efficiency. Synth. Met. 159, 1538 (2009).

    CAS  Article  Google Scholar 

  44. 44.

    L.T. Costa, R.L. Lavall, R.S. Borges, J. Rieumont, G.G. Silva, and M.C.C. Ribeiro: Polymer electrolytes based on poly(ethylene glycol) dimethyl ether and the ionic liquid 1-butyl-3-methylimidazolium hexaflurophosphate: Preparation, physico-chemical characterization, and theoretical study. Electrochim. Acta 53, 1568 (2007).

    CAS  Article  Google Scholar 

  45. 45.

    U-S. Park, Y-J. Hong, and S.M. Oh: Fluorescence spectroscopy for local viscosity measurements in polyacrylonitrile (PAN)-based polymer gel electrolytes. Electrochim. Acta 41, 849 (1996).

    CAS  Article  Google Scholar 

  46. 46.

    S.M. Jeon, S.C. Bae, J. Turner, and S. Granick: Microviscosity of an ion-conducting polymer probed by fluorescence depolarization and dielectric spectroscopy. Polymer 43, 4651 (2002).

    CAS  Article  Google Scholar 

  47. 47.

    D.A. Waldow, M.D. Ediger, Y. Yamaguchi, Y. Matsushita, and I. Noda: Viscosity dependence of the local segmental dynamics of anthracene-labeled polystyrene in dilute solution. Macromolecules 24, 3147 (1991).

    CAS  Article  Google Scholar 

  48. 48.

    S. Anandan and S. Radhakrishna: Luminescence spectroscopy of some polymeric materials, in Polymeric Materials, edited by S. Radhakrishna and A.K. Arof (Narosa Publishing House, India 1998), pp. 181–189.

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Exploratory Research Grant Scheme (ERGS: ER017-2011A).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ramesh, S., Lu, SC. Concentration effect of BMIMTf on P(VdF-HFP)/MgTf-based solid polymer electrolyte system. Journal of Materials Research 27, 1488–1496 (2012). https://doi.org/10.1557/jmr.2012.66

Download citation