Abstract
Solid polymer electrolytes (SPEs) with poly(vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] as polymer host, doped with magnesium trifluoromethanesulfonate (MgTf) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMTf) have been synthesized via solution casting method. This P(VdF-HFP)/MgTf/BMIMTf-based SPE achieves ~ 3 × 10-3 and ~] 7 × 10-3 S cm-1 at 30 and 80 °C, respectively, with 75 part by weight (pbw) of BMIMTf. At the same time, they are also examined by means of frequency-dependent conductivity, dielectric permittivity, and dielectric modulus studies. Scanning electron microscopy reveals drastic morphological changes on SPE with small amount of BMIMTf. Even though it gradually changes back to its undoped state with higher concentration, it appears to be swollen. Examination on relationship between ionic conductivity and crystallinity by differential scanning calorimetry technique shows inconsistency at concentration higher than 75 pbw. This observation is related to greater ion–ion interaction due to excessive BMIMTf. Photoluminescence is also used to detect structural alterations in the local environment of SPE.
This is a preview of subscription content, access via your institution.










References
- 1.
R.A. Silva, G.G. Silva, R.L. Moreira, and M.A. Pimenta: The effects of salt concentration on cation complexation in triblock-polyether electrolyte. Phys. Chem. Chem. Phys. 5, 2424 (2003).
- 2.
I-D. Wu and F-C. Chang: Determination of the interaction within polyester-based solid polymer electrolyte using FTIR spectroscopy. Polymer 48, 989 (2007).
- 3.
V.D. Noto, M. Vittadello, S. Lavina, M. Fauri, and S. Biscazzo: Mechanism of ionic conductivity in poly(ethyleneglycol 400)/(LiCl)x electrolytic complexes: Studies based on electrical spectroscopy. J. Phys. Chem. B 105, 4584 (2001).
- 4.
A. Brazier, G.B. Appetecchi, S. Passerini, A.S. Vuk, R. Orel, F. Donsanti, and F. Decker: Ionic liquids in electrochromic devices. Electrochim. Acta 52, 4792 (2007).
- 5.
Z.H. Li, H.P. Zhang, P. Zhang, G.C. Li, Y.P. Wu, and X.D. Zhou: Effects of the porous structure on conductivity of nanocomposite polymer electrolyte for lithium ion batteries. J. Membr. Sci. 322, 418 (2008).
- 6.
K-M. Lee, V. Suryanarayanan, and K-C. Ho: A photo-physical and electrochemical impedance spectroscopy study on the quasi-solid state dye-sensitized solar cells based on poly(vinylidene fluoride-co-hexafluoropropylene). J. Power Sources 185, 1605 (2008).
- 7.
J. Reiter, O. Krejza, and M. Sedlaříková: Electrochemical devices employing methacrylate-based polymer electrolytes. Sol. Energy Mater. Sol. Cells 93, 249 (2009).
- 8.
S-K. Jeong, Y-K. Jo, and N-J. Jo: Decoupled ion conduction mechanism of poly(vinyl alcohol) based Mg-conducting solid polymer electrolyte. Electrochim. Acta 52, 1549 (2006).
- 9.
K. Perera, M.A.K.L. Dissanayake, and P.W.S.K. Bandaranayake: Ionic conductivity of a gel polymer electrolyte based on Mg(ClO4)2 and polyacrylonitrile (PAN). Mater. Res. Bull. 39, 1745 (2004).
- 10.
G.G. Kumar and N. Munichandraiah: Solid-state rechargeable magnesium cell with poly(vinylidenefluoride)-magnesium triflate gel polymer electrolyte. J. Power Sources 102, 46 (2001).
- 11.
D.F. Vieira, C.O. Avellaneda, and A. Pawlicka: Conductivity study of a gelatine-based polymer electrolyte. Electrochim. Acta 53, 1404 (2007).
- 12.
J. Fuller, A.C. Breda, and R.T. Carlin: Ionic liquid-polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids. J. Electroanal. Chem. 459, 29 (1998).
- 13.
R. Marcilla, F. Alcaide, H. Sardon, J.A. Pomposo, C. Pozo-Gonzalo, and D. Mecerreyes: Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochemical devices. Electrochem. Commun. 8, 482 (2006).
- 14.
J. Reiter, J. Vondrák, J. Michálek, and Z. Mićka: Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents. Electrochim. Acta 52, 1398 (2006).
- 15.
B. Singh, M.S. Hundal, G-G. Park, J-S. Park, W-Y. Lee, C-S. Kim, K. Yamada, and S.S. Sekhon: Non-aqueous polymer electrolytes containing room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium tetrafluoroborate. Solid State Ionics 178, 1404 (2007).
- 16.
P.K. Singh, K-W. Kim, and H-W. Rhee: Electrical, optical and photoelectrochemical studies on a solid PEO-polymer electrolyte doped with low viscosity ionic liquid. Electrochem. Commun. 10, 1769 (2008).
- 17.
D. Chen, Q. Zhang, G. Wang, H. Zhang, and J.H. Li: A novel composite polymer electrolyte containing room-temperature ionic liquids and heteropolyacids for dye-sensitized solar cells. Electrochem. Commun. 9, 2755 (2007).
- 18.
S. Ramesh and M.F. Chai: Conductivity, dielectric behavior and FTIR studies of high molecular weight poly(vinylchloride)–lithium triflate polymer electrolytes. Mater. Sci. Eng., B 139, 240 (2007).
- 19.
M.J. Reddy and P.P. Chu: Effect of Mg2+ on PEO morphology and conductivity. Solid State Ionics 149, 115 (2002).
- 20.
M.J. Reddy and P.P. Chu: Ion pair formation and its effect in PEO:Mg solid polymer electrolyte system. J. Power Sources 109, 340 (2002).
- 21.
R. Gregorio Jr. and D.S. Borges: Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer 49, 4009 (2008).
- 22.
A.S.A. Khiar, R. Puteh, and A.K. Arof: Conductivity studies of a chitosan-based polymer electrolyte. Physica B 373, 23 (2006).
- 23.
J.J. Xu, H. Ye, and J. Huang: Novel zinc ion conducting polymer gel eletrolytes based on ionic liquids. Electrochem. Commun. 7, 1309 (2005).
- 24.
S. Ramesh and K.C. Wong: Conductivity, dielectric behaviour and thermal stability studies of lithium ion dissociation in poly(methyl methacrylate)-based gel polymer electrolytes. Ionics 15, 249 (2009).
- 25.
M. Venkateswarlu and N. Satyanarayana: AC conductivity studies of silver based fast ion conducting glassy materials for solid state batteries. Mater. Sci. Eng., B 54, 189 (1998).
- 26.
J.R. Dygas, B. Misztal-Faraj, Z. Florjańczyk, F. Krok, M. Marzantowicz, and E. Zygadło-Monikowska: Effects of inhomogeneity on ionic conductivity and relaxations in PEO and PEO–salt complexes. Solid State Ionics 157, 249 (2003).
- 27.
N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, and R.S. Katiyar: Solid polymer electrolytes based on polyethylene oxide and lithium trifluoro-methane sulfonate (PEO–LiCF3SO3): Ionic conductivity and dielectric relaxation. Solid State Ionics 179, 689 (2008).
- 28.
S. Ramesh and K.Y. Ng: Characterization of polymer electrolytes based on high molecular weight PVC and Li2SO4. Curr. Appl. Phys. 9, 329 (2009).
- 29.
R. Baskaran, S. Selvasekarapandian, G. Hirankumar, and M.S. Bhuvaneswari: Vibrational, ac impedance and dielectric spectroscopic studies of poly(vinylacetate)–N,N–dimethylformamide–LiClO4 polymer gel electrolytes. J. Power Sources 134, 235 (2004).
- 30.
A. Awadhia, S.K. Patel, and S.L. Agrawal: Dielectric investigations in PVA based gel electrolytes. Prog. Cryst. Growth Charact. Mater. 52, 61 (2006).
- 31.
M.H. Buraidah, L.P. Teo, S.R. Majid, and A.K. Arof: Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physica B 404, 1373 (2009).
- 32.
S. Ramesh, F.Y. Tai, and J.S. Chia: Conductivity and FTIR studies on PEO–LiX [X: CF3SO3−, SO42−] polymer electrolytes. Spectrochim. Acta Part A 69, 670 (2008).
- 33.
Z. Osman, Z.A. Ibrahim, and A.K. Arof: Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes. Carbohydr. Polym. 44, 167 (2001).
- 34.
R. Mishra, N. Baskaran, P.A. Ramakrishna, and K.J. Rao: Lithium ion conduction in extreme polymer in salt regime. Solid State Ionics 112, 261 (1998).
- 35.
M.Z.A. Yahya and A.K. Arof: Conductivity and x-ray photoelectron studies on lithium acetate doped chitosan films. Carbohydr. Polym. 55, 95 (2004).
- 36.
A.M. Elmér, B. Wesslén, P. Sommer-Larsen, K. West, H. Hassender, and P. Jannasch: Ion conductive electrolyte membranes based on co-continuous polymer blends. J. Mater. Chem. 13, 2168 (2003).
- 37.
G.C. Li, P. Zhang, H.P. Zhang, L.C. Yang, and Y.P. Wu: A porous polymer electrolyte based on P(VDF-HFP) prepared by a simple phase separation process. Electrochem. Commun. 10, 1883 (2008).
- 38.
S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, and Å. Wendsjö: Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407 (2001).
- 39.
V. Aravindan, P. Vickramen, and T. Prem Kumar: Polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-based composite polymer electrolyte containing LiPF3(CF3CF2)3. J. Non-Cryst. Solids 354, 3451 (2008).
- 40.
J.S. Lee, T. Nohira, and R. Hagiwara: Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified intermediate temperature fuel cell. J. Power Sources 171, 536 (2007).
- 41.
K-S. Ji, H-S. Moon, J-W. Kim, and J-W. Park:Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes. J. Power Sources 117, 124 (2003).
- 42.
S.W. Choi, S.M. Jo, W.S. Lee, and Y-R. Kim: An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv. Mater. 15, 2027 (2003).
- 43.
P.K. Singh, K-W. Kim, and H-W. Rhee: Development of characterization of ionic liquid doped solid polymer electrolyte membrane for battery efficiency. Synth. Met. 159, 1538 (2009).
- 44.
L.T. Costa, R.L. Lavall, R.S. Borges, J. Rieumont, G.G. Silva, and M.C.C. Ribeiro: Polymer electrolytes based on poly(ethylene glycol) dimethyl ether and the ionic liquid 1-butyl-3-methylimidazolium hexaflurophosphate: Preparation, physico-chemical characterization, and theoretical study. Electrochim. Acta 53, 1568 (2007).
- 45.
U-S. Park, Y-J. Hong, and S.M. Oh: Fluorescence spectroscopy for local viscosity measurements in polyacrylonitrile (PAN)-based polymer gel electrolytes. Electrochim. Acta 41, 849 (1996).
- 46.
S.M. Jeon, S.C. Bae, J. Turner, and S. Granick: Microviscosity of an ion-conducting polymer probed by fluorescence depolarization and dielectric spectroscopy. Polymer 43, 4651 (2002).
- 47.
D.A. Waldow, M.D. Ediger, Y. Yamaguchi, Y. Matsushita, and I. Noda: Viscosity dependence of the local segmental dynamics of anthracene-labeled polystyrene in dilute solution. Macromolecules 24, 3147 (1991).
- 48.
S. Anandan and S. Radhakrishna: Luminescence spectroscopy of some polymeric materials, in Polymeric Materials, edited by S. Radhakrishna and A.K. Arof (Narosa Publishing House, India 1998), pp. 181–189.
Acknowledgment
This work was supported by the Exploratory Research Grant Scheme (ERGS: ER017-2011A).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ramesh, S., Lu, SC. Concentration effect of BMIMTf on P(VdF-HFP)/MgTf-based solid polymer electrolyte system. Journal of Materials Research 27, 1488–1496 (2012). https://doi.org/10.1557/jmr.2012.66
Received:
Accepted:
Published:
Issue Date: