Thermoelectric properties of CaMnO3 films obtained by soft chemistry synthesis

Abstract

Polycrystalline randomly oriented CaMnO3 films were successfully deposited on sapphire substrates by soft chemistry methods. The precursor solutions were obtained from a mixture of metal acetates dissolved in acids. The Seebeck coefficient and the electrical resistivity were measured in the temperature range of 300 K < T < 1000 K. Modifications of thermal annealing procedures during the deposition of precursor layers resulted in different power factor values. Thermal annealing of CaMnO3 films at 900 °C for 48 h after four-layer depositions (route A) resulted in a pure perovskite phase with higher power factor and electrical resistivity than four-layer depositions of films annealed layer by layer at 900 °C for 48 h (route B). The studied films have negative Seebeck coefficients indicative of n-type conduction and electrical resistivities showing semiconducting behavior.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

References

  1. 1.

    D.M. Rowe: Thermoelectrics Handbook—Macro to Nano (CRC Press/Taylor & Francis Group, Boca Raton, 2006), pp. 35–1.

    Google Scholar 

  2. 2.

    C.R. Wiebe, J.E. Greedan, J.S. Gardner, Z. Zeng, and M. Greenblatt: Charge and magnetic ordering in the electron-doped magnetoresistive materials CaMnO3-δ (δ = 0.06; 0.11). Phys. Rev. B 64, 644211 (2001).

    Article  Google Scholar 

  3. 3.

    C.N.R. Rao, A.K. Cheetham, and R. Mahesh: Giant magnetoresistance and related properties of rare-earth manganates and other oxide systems. Chem. Mater. 8, 2421 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    C.C.K. Chiang and K.R. Poeppelmeier: Structural investigation of oxygen-deficient perovskite CaMnO2.75. Mater. Lett. 12, 102 (1991).

    CAS  Article  Google Scholar 

  5. 5.

    L. Bocher, M.H. Aguirre, R. Robert, D. Logvinovich, S. Bakardjieva, J. Hejtmanek, and A. Weidenkaff: High-temperature stability, structure and thermoelectric properties of CaMn1-x Nbx O3 phases. Acta Mater. 57, 5667 (2009).

    CAS  Article  Google Scholar 

  6. 6.

    L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, and A. Weidenkaff: CaMn1-x NbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    J. Briàtico, B. Alascio, R. Allub, A. Butera, A. Caneiro, M.T. Causa, and M. Tovar: Double-exchange interaction in electron-doped CaMnO3-δ perovskites. Phys. Rev. B 53, 14020 (1996).

    Article  Google Scholar 

  8. 8.

    M.E.M. Jorge, A.C. Dos Santos, and M.R. Nunes: Effects of synthesis method on stoichiometry, structure and electrical conductivity of CaMnO3-δ. Int. J. Inorg. Mater. 3, 915 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    K. Vijayanandhini and T. Kutty: Phase conversions in calcium manganites with changing Ca/Mn ratios and their influence on the electrical transport properties. J. Mater. Sci. Mater. Electron. 20, 445 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    G.J. Snyder, J.R. Lim, C-K. Huang, and J-P. Fleurial: Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2, 528 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    L.D. Hicks and M.S. Dresselhaus: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 (1993).

    CAS  Article  Google Scholar 

  12. 12.

    H. Ohta, K. Sugiura, and K. Koumoto: Recent progress in oxide thermoelectric materials: p-Type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem. 47, 8429 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    D.S. Paik, A.V. Prasada Rao, and S. Komarneni: Ba titanate and barium/strontium titanate thin films from hydroxide precursors: Preparation and ferroelectric behavior. J. Sol-Gel Sci. Technol. 10, 213 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    R. Robert, M.H. Aguirre, P. Hug, A. Reller, and A. Weidenkaff: High-temperature thermoelectric properties of Ln(Co, Ni)O3 (Ln = La, Pr, Nd, Sm, Gd and Dy) compounds. Acta Mater. 55, 4965 (2007).

    CAS  Article  Google Scholar 

  15. 15.

    A. Weidenkaff, R. Robert, M. Aguirre, L. Bocher, T. Lippert, and S. Canulescu: Development of thermoelectric oxides for renewable energy conversion technologies. Renewable Energy 33, 342 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    H. Taguchi, Y. Kuniyoshi, and M. Nagao: Synthesis of CaMnO3 and electrical properties under various relative pressures of water vapour. J. Mater. Sci. Lett. 10, 675 (1991).

    CAS  Article  Google Scholar 

  17. 17.

    R.S. Tichy and J.B. Goodenough: Oxygen permeation in cubic SrMnO3-δ. Solid State Sci. 4, 661 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    D. Flahaut, T. Mihara, R. Funahashi, N. Nabeshima, K. Lee, H. Ohta, and K. Koumoto: Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system. J. Appl. Phys. 100, 084911 (2006).

    Article  Google Scholar 

Download references

Acknowledgment

The Swiss Federal Office of Energy (BfE) and Empa are gratefully acknowledged for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anke Weidenkaff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alfaruq, D.S., Otal, E.H., Aguirre, M.H. et al. Thermoelectric properties of CaMnO3 films obtained by soft chemistry synthesis. Journal of Materials Research 27, 985–990 (2012). https://doi.org/10.1557/jmr.2012.63

Download citation