Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches


Due to its excellent physical properties, graphene acting as reinforcing fillers has attracted intense interests. To achieve a controlled distribution, the formation of a conductive network composed of graphene sheets within polymer matrix is of critical importance. In this work, polystyrene (PS) microspheres wrapped by graphene oxide (GO) sheets were prepared via layer-by-layer (LBL) assembly of oppositely charged GO sheets onto PS microspheres. The deposited GO was then reduced, and the composite films with a graphene conductive network were prepared by hot pressing. The morphology of graphene conductive network was studied, and the thermal and electrical properties of the composite films were measured. The as-prepared composites showed an improved thermal stability as well as electrical conductivity with a percolation threshold as low as 0.2 vol%. The combination of latex technology and LBL self-assembly method thus demonstrated an efficient and facile approach to fabricate electrically conductive graphene/polymer composites.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.


  1. 1.

    C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj: Graphene: The new two-dimensional nanomaterial. Angew. Chem. Int. Ed. 48(42), 7752 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth: The structure of suspended graphene sheets. Nature 446(7131), 60 (2007).

    CAS  Article  Google Scholar 

  3. 3.

    D.R. Dreyer, S.J. Park, C.W. Bielawski, and R.S. Ruoff: The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    T.N. Zhou, F. Chen, C.Y. Tang, H.W. Bai, Q. Zhang, H. Deng, and Q. Fu: The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite. Compos. Sci. Technol. 71(9), 1266 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    K. Liu, L. Chen, Y. Chen, J.L. Wu, W.L. Zhang, F. Chen, and Q. Fu: Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide. J. Mater. Chem. 21(24), 8612 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    X.Y. Qi, D. Yan, Z.G. Jiang, Y.K. Cao, Z.Z. Yu, F. Yavari, and N. Koratkar: Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3(8), 3130 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    H.B. Zhang, W.G. Zheng, Q. Yan, Y. Yang, J.W. Wang, Z.H. Lu, G.Y. Ji, and Z.Z. Yu: Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5), 1191 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaa, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff: Graphene-based composite materials. Nature 442(7100), 282 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    M. Quintana, K. Spyrou, M. Grzelczak, W.R. Browne, P. Rudolf, and M. Prato: Functionalization of graphene via 1, 3-dipolar cycloaddition. ACS Nano 4(6), 3527 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    S. Stankovich, R.D. Piner, S.T. Nguyen, and R.S. Ruoff: Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44(15), 3342 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    M Peng, D Li, Y Chen, and Q Zheng: Electrostatic-assembly of carbon nanotubes (CNTs) and polymer particles in water: A facile approach to improve the dispersion of CNTs in thermoplastics. Macromol. Rapid Commun. 27(11), 859 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    J.C. Grunlan, A.R. Mehrabi, M.V. Bannon, and J.L. Bahr: Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv. Mater. 16(2), 150 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    S.A. Ju, K. Kim, J.H. Kim, and S.S. Lee: Graphene-wrapped hybrid spheres of electrical conductivity. ACS Appl. Mater. Interfaces 3(8), 2904 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Y.X. Li, Z.Q. Wang, L. Yang, H. Gua, and G. Xue: Efficient coating of polystyrene microspheres with graphene nanosheets. Chem. Commun. 47(38), 10722 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    E. Tkalya, M. Ghislandi, A. Alekseev, C. Koninga, and J. Loos: Latex-based concept for the preparation of graphene-based polymer nanocomposites. J. Mater. Chem. 20(15), 3035 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    W.L. Zhang, Y.D. Liu, and H.J. Choi: Graphene oxide coated core–shell structured polystyrene microspheres and their electrorheological characteristics under applied electric field. J. Mater. Chem. 21(19), 6916 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    D.D. Kulkarni, I. Choi, S.S. Singamaneni, and V.V. Tsukruk: Graphene oxide–polyelectrolyte nanomembranes. ACS Nano 4(8), 4667 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    D.R. Wang and X.G. Wang: Self-assembled graphene/azo polyelectrolyte multilayer film and its application in electrochemical energy storage device. Langmuir 27(5), 2007 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    X. Zhao, Q.H. Zhang, Y.P. Hao, Y.Z. Li, Y. Fang, and D. Chen: Alternate multilayer films of poly(vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly. Macromolecules 43(22), 9411 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    J. Hong, K. Char, and B.S. Kim: Hollow capsules of reduced graphene oxide nanosheets assembled on a sacrificial colloidal particle. J. Phys. Chem. Lett. 1(24), 3442 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    M.X. Tang, Y.J. Qin, Y.Y. Wang, and Z.X. Guo: Hollow carbon nanotube microspheres and hemimicrospheres. J. Phys. Chem. C 113(5), 1666 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339 (1958).

    CAS  Article  Google Scholar 

  23. 23.

    V.H. Pham, T.V. Cuong, T.T. Dang, S.H. Hur, B.S. Kong, E.J. Kim, E.W. Shin, and J.S. Chung: Superior conductive polystyrene–chemically converted graphene nanocomposite. J. Mater. Chem. 21(30), 11312 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    L.M. Zhang, Z.X. Lu, Q.H. Zhao, J. Huang, H. Shen, and Z.J. Zhang: Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7(4), 460 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    C.Z. Zhu, S.J. Guo, Y.X. Fang, and S.J. Dong: Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4(4), 2429 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    A. Jorio, E.H.M. Ferreira, M.V.O. Moutinho, F. Stavale, C.A. Achete, and R.B. Capaz: Measuring disorder in graphene with the G and D bands. Phys. Status Solidi B 247(11–12), 2980 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    P.B. Grady: Recent developments concerning the dispersion of carbon nanotubes in polymers. Macromol. Rapid Commun. 31(3), 247 (2010).

    CAS  Article  Google Scholar 

Download references


The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 51125011) and “Shu Guang” project (Grant No. 09SG02) supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation.

Author information



Corresponding author

Correspondence to Tianxi Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fan, W., Zhang, C., Tjiu, W.W. et al. Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches. Journal of Materials Research 28, 611–619 (2013). https://doi.org/10.1557/jmr.2012.437

Download citation