Novel approaches for low temperature sintering of inkjet-printed inorganic nanoparticles for roll-to-roll (R2R) applications


Within the last decade, inkjet printing technology has developed from only a text and graphic industry to a major topic of scientific research and development. Inkjet printing can be used as a highly reproducible noncontact patterning technique to print at high speeds either small or large areas with high quality features; it requires only small amounts of functional materials, which immediately lower production costs. Furthermore, inkjet printing reduces the amount of processing steps due to its additive technique of materials deposition, which further decreases productions costs. This contribution provides a literature survey covering the latest results in low temperature sintering inkjet-printed metal precursor materials in a fast and efficient manner, aiming for roll-to-roll processing. The prepared features can be used as interconnects and contacts for microelectronic applications, including organic light-emitting diodes, organic photovoltaics, and radio frequency identification tags.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.


  1. 1.

    IDTechEx: (accessed April 3, 2012).

  2. 2.

    V. Subramanian, J.M.J. Frechet, P.C. Chang, D.C. Huang, J.B. Lee, S.E. Molesa, A.R. Murphy, D.R. Redinger, and S.K. Volkman: Progress toward development of all-printed RFID tags: Materials, processes, and devices. Proc. IEEE 93, 1330 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    K. Woo, C. Bae, Y. Jeong, D. Kim, and J. Moon: Inkjet-printed Cu source/drain electrodes for solution-deposited thin film transistors. J. Mater. Chem. 20, 3877 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    A.R. Liberski, J.T. Delaney, A. Liberska, J. Perelaer, M. Schwarz, T. Schüler, R. Möller, and U.S. Schubert: Printed conductive features for DNA chip applications prepared on PET without sintering. RSC Adv. 2, 2308 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, and U.S. Schubert: Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20, 8446 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    M. Helgesen, R. Sondergaard, and F.C. Krebs: Advanced materials and processes for polymer solar cell devices. J. Mater. Chem. 20, 36 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    M. Singh, H.M. Haverinen, P. Dhagat, and G.E. Jabbour: Inkjet printing - process and its applications. Adv. Mater. 22, 673 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    A. Kamyshny, J. Steinke, and S. Magdassi: Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4, 19 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    A.L. Dearden, P.J. Smith, D.Y. Shin, N. Reis, B. Derby, and P. O’Brien: A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks. Macromol. Rapid Commun. 26, 315 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E.J.W. List: Direct ink-jet printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applications. Adv. Funct. Mater. 17, 3111 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    P. Buffat and J.P. Borel: Size effect on melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976).

    CAS  Article  Google Scholar 

  12. 12.

    G.L. Allen, R.A. Bayles, W.W. Gile, and W.A. Jesser: Small particle melting of pure metals. Thin Solid Films 144, 297 (1986).

    CAS  Article  Google Scholar 

  13. 13.

    J. Perelaer, A.W.M. de Laat, C.E. Hendriks, and U.S. Schubert: Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. J. Mater. Chem. 18, 3209 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    S-J.L. Kang: Sintering: Densification, Grain Growth, and Microstructure, 1st ed. (Elsevier Butterworth-Heinemann, Burlington, 2005), pp. 37–77.

    Google Scholar 

  15. 15.

    R.S. Goeke and A.K. Datye: Model oxide supports for studies of catalyst sintering at elevated temperatures. Top. Catal. 46, 3 (2007).

    CAS  Article  Google Scholar 

  16. 16.

    B. Ingham, T.H. Lim, C.J. Dotzler, A. Henning, M.F. Toney, and R.D. Tilley: How nanoparticles coalesce: An in situ study of Au nanoparticle aggregation and grain growth. Chem. Mater. 23, 3312 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    S.K. Volkman, S. Yin, T. Bakhishev, K. Puntambekar, V. Subramanian, and M.F. Toney: Mechanistic studies on sintering of silver nanoparticles. Chem. Mater. 23, 4634 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    J.R. Greer and R.A. Street: Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Mater. 55, 6345 (2007).

    CAS  Article  Google Scholar 

  19. 19.

    L.H. Liang, C.M. Shen, S.X. Du, W.M. Liu, X.C. Xie, and H.J. Gao: Increase in thermal stability induced by organic coatings on nanoparticles. Phys. Rev. B 70, 205419 (2004).

    Article  CAS  Google Scholar 

  20. 20.

    J. Miettinen, V. Pekkanen, K. Kaija, P. Mansikkamäki, J. Mäntysalo, M. Mäntysalo, J. Niittynen, J. Pekkanen, T. Saviauk, and R. Rönkkä: Inkjet printed system-in-package design and manufacturing. Microelectron. J. 39, 1740 (2008).

    Article  Google Scholar 

  21. 21.

    A. Scandurra, G.F. Indelli, N.G. Sparta, F. Galliano, S. Ravesi, and S. Pignataro: Low-temperature sintered conductive silver patterns obtained by inkjet printing for plastic electronics. Surf. Interface Anal. 42, 1163 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian: Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150, G412 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, and S. Magdassi: Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano 5, 3354 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    I. Reinhold, C.E. Hendriks, R. Eckardt, J.M. Kranenburg, J. Perelaer, R.R. Baumann, and U.S. Schubert: Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J. Mater. Chem. 19, 3384 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen, and H. Seppä: Electrical sintering of nanoparticle structures. Nanotechnology 19, 175201 (2008).

    Article  CAS  Google Scholar 

  26. 26.

    J. Leppäniemi, M. Aronniemi, T. Mattila, A. Alastalo, M. Allen, and H. Seppä: Printed WORM memory on a flexible substrate based on rapid electrical sintering of nanoparticles. IEEE Trans. Electron Devices 58, 151 (2011).

    Article  Google Scholar 

  27. 27.

    K.C. Yung, X. Gu, C.P. Lee, and H.S. Choy: Ink-jet printing and camera flash sintering of silver tracks on different substrates. J. Mater. Process. Technol. 210, 2268 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    H.S. Kim, S.R. Dhage, D.E. Shim, and H.T. Hahn: Intense pulsed light sintering of copper nanoink for printed electronics. Appl. Phys. A 97, 791 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    J. Ryu, H.S. Kim, and H.T. Hahn: Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. J. Electron. Mater. 40, 42 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    J. Perelaer, B-J. de Gans, and U.S. Schubert: Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18, 2101 (2006).

    CAS  Article  Google Scholar 

  31. 31.

    J. Perelaer, M. Klokkenburg, C.E. Hendriks, and U.S. Schubert: Microwave flash sintering of inkjet-printed silver tracks on polymer substrates. Adv. Mater. 21, 4830 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    J. Perelaer, R. Abbel, S. Wünscher, R. Jani, T. van Lammeren, and U.S. Schubert: Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: From non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv. Mater. 24, 2620 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    J. Perelaer, R. Jani, M. Grouchko, A. Kamyshny, S. Magdassi, and U.S. Schubert: Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Adv. Mater. 24, 3993 (2012).

    CAS  Article  Google Scholar 

  34. 34.

    S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Frechet, and D. Poulikakos: All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18, 345202 (2007).

    Article  CAS  Google Scholar 

  35. 35.

    R. Lesyuk, W. Jillek, Y. Bobitski, and B. Kotlyarchuk: Low-energy pulsed laser treatment of silver nanoparticles for interconnects fabrication by ink-jet method. Microelectron. Eng. 88, 318 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    T. Kumpulainen, J. Pekkanen, J. Valkama, J. Laakso, R. Tuokko, and M. Mäntysalo: Low temperature nanoparticle sintering with continuous wave and pulse lasers. Opt. Laser Technol. 43, 570 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    D. Worsley, M. Cherrington, T.C. Claypole, D. Deganello, I. Mabbett, and T. Watson: Ultrafast near-infrared sintering of a slot-die coated nano-silver conducting ink. J. Mater. Chem. 21, 7562 (2011).

    Article  CAS  Google Scholar 

  38. 38.

    D. Tobjörk, H. Aarnio, P. Pulkkinen, R. Bollstrom, A. Maattanen, P. Ihalainen, T. Makela, J. Peltonen, M. Toivakka, H. Tenhu, and R. Osterbacka: IR-sintering of ink-jet printed metal-nanoparticles on paper. Thin Solid Films 520, 2949 (2012).

    Article  CAS  Google Scholar 

  39. 39.

    M.J. Coutts, M.B. Cortie, M.J. Ford, and A.M. McDonagh: Rapid and controllable sintering of gold nanoparticle inks at room temperature using a chemical agent. J. Phys. Chem. C 113, 1325 (2009).

    CAS  Article  Google Scholar 

  40. 40.

    S. Magdassi, M. Grouchko, O. Berezin, and A. Kamyshny: Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4, 1943 (2010).

    CAS  Article  Google Scholar 

  41. 41.

    S.F. Jahn, T. Blaudeck, R.R. Baumann, A. Jakob, P. Ecorchard, T. Ruffer, H. Lang, and P. Schmidt: Inkjet printing of conductive silver patterns by using the first aqueous particle-free MOD ink without additional stabilizing ligands. Chem. Mater. 22, 3067 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    G.Q. Xie, O. Ohashi, N. Yamaguchi, and A.R. Wang: Effect of surface oxide films on the properties of pulse electric-current sintered metal powders. Metall. Mater. Trans. A 34, 2655 (2003).

    Article  Google Scholar 

  43. 43.

    J.R. Groza, S.H. Risbud, and K. Yamazaki: Plasma activated sintering of additive-free AlN powders to near-theoretical density in 5 minutes. J. Mater. Res. 7, 2643 (1992).

    CAS  Article  Google Scholar 

  44. 44.

    A.D. Albert, M.F. Becker, J.W. Keto, and D. Kovar: Low temperature, pressure-assisted sintering of nanoparticulate silver films. Acta Mater. 56, 1820 (2008).

    CAS  Article  Google Scholar 

  45. 45.

    M.F.A.M. van Hest, C.J. Curtis, A. Miedaner, R.M. Pasquarelli, T. Kaydanova, P. Hersh and D.S. Ginley: Direct-write contacts: Metallization and contact formation, in 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, 2008. 04922798.

    Google Scholar 

  46. 46.

    H.M. Lee, S.Y. Choi, K.T. Kim, J.Y. Yun, D.S. Jung, S.B. Park, and J. Park: A novel solution-stamping process for preparation of a highly conductive aluminum thin film. Adv. Mater. 23, 5524 (2011).

    CAS  Article  Google Scholar 

  47. 47.

    M. Grouchko, A. Kamyshny, and S. Magdassi: Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing. J. Mater. Chem. 19, 3057 (2009).

    CAS  Article  Google Scholar 

  48. 48.

    P.J. Smith and A. Morrin: Reactive inkjet printing. J. Mater. Chem. 22, 10965 (2012).

    CAS  Article  Google Scholar 

  49. 49.

    D.P. Li, D. Sutton, A. Burgess, D. Graham, and P.D. Calvert: Conductive copper and nickel lines via reactive inkjet printing. J. Mater. Chem. 19, 3719 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    Z.K. Kao, Y.H. Hung, and Y.C. Liao: Formation of conductive silver films via inkjet reaction system. J. Mater. Chem. 21, 18799 (2011).

    CAS  Article  Google Scholar 

Download references


The European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 248816 is greatly acknowledged for financial support as well as the Fonds der Chemischen Industrie (FCI) and the Dutch Polymer Institute (DPI, technology area HTE).

Author information



Corresponding authors

Correspondence to Jolke Perelaer or Ulrich S. Schubert.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perelaer, J., Schubert, U.S. Novel approaches for low temperature sintering of inkjet-printed inorganic nanoparticles for roll-to-roll (R2R) applications. Journal of Materials Research 28, 564–573 (2013).

Download citation