Abstract
We report on the successful synthesis of a graphene–carbon nanotube (CNT) hybrid architecture by a parallel chemical vapor deposition (CVD) of the two carbon allotropes. The carbon hybrid is a three-dimensional (3D) nanostructure with tuneable architecture comprising vertically grown CNTs as pillars and a large-area graphene plane as the floor. The formation of CNTs and graphene occurs simultaneously in a single CVD growth that we describe as a synchronous synthesis method. Unique nature of the fabrication approach contributes significantly to the quality and composure of final nanohybrid. Detailed characterization elucidates the cohesive structure and robust contact between the graphene floor and the CNTs in the hybrid structure. The functionality of the synthesized graphene hybrid structure has been demonstrated by its incorporation into a supercapacitor cell. Our fabrication approach provides an attractive pathway for the fabrication of novel 3D hybrid nanostructures and efficient device integration.
This is a preview of subscription content, access via your institution.









References
- 1.
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
- 2.
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
- 3.
Y. Zhang, Y-W. Tan, H.L. Stormer, and P. Kim: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).
- 4.
A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183–191 (2007).
- 5.
J-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008).
- 6.
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).
- 7.
C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
- 8.
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007).
- 9.
X. Wang, L. Zhi, and K. Mullen: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2007).
- 10.
J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, and F. Wei: Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48, 487–493 (2009).
- 11.
J. Lin, D. Teweldebrhan, K. Ashraf, G. Liu, X. Jing, Z. Yan, R. Li, M. Ozkan, R.K. Lake, A.A. Balandin, and C.S. Ozkan: Gating of single-layer graphene with single-stranded deoxyribonucleic acids. Small 6, 1150–1155 (2010).
- 12.
E. Yoo, J. Kim, E. Hosono, H-S. Zhou, T. Kudo, and I. Honma: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008).
- 13.
S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
- 14.
M.S. Dresselhaus, G. Dresselhaus, and A. Jorio: Unusual properties and structure of carbon nanotubes. Annu. Rev. Mater. 34, 247–278 (2004).
- 15.
V.N. Popov: Carbon nanotubes: Properties and application. Mater. Sci. Eng., R 43, 42 (2004).
- 16.
P.G. Collins, M.S. Arnold, and P. Avouris: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).
- 17.
A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai: Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).
- 18.
W.A. de Heer, A. Chatelain, and D. Ugarte: A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995).
- 19.
D.H. Lee, J.E. Kim, T.H. Han, J.W. Hwang, S. Jeon, S-Y. Choi, S.H. Hong, W.J. Lee, R.S. Ruoff, and S.O. Kim: Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv. Mater. 22, 1247–1252 (2010).
- 20.
H.Y. Jeong, D-S. Lee, H.K. Choi, D.H. Lee, J-E. Kim, J.Y. Lee, W.J. Lee, S.O. Kim, and S-Y. Choi: Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl. Phys. Lett. 96, 213105–213105-3 (2010).
- 21.
D. Yu and L. Dai: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467–470 (2009).
- 22.
V.C. Tung, L-M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner, and Y. Yang: Low-temperature solution processing of graphene carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9, 1949–1955 (2009).
- 23.
G.K. Dimitrakakis, E. Tylianakis, and G.E. Froudakis: Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8, 3166–3170 (2008).
- 24.
M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008).
- 25.
D.H. Lee, J.A. Lee, W.J. Lee, D.S. Choi, W.J. Lee, and S.O. Kim: Facile fabrication and field emission of metal-particle-decorated vertical N-doped carbon nanotube/graphene hybrid films. J. Phys. Chem. C 114, 21184–21189 (2010).
- 26.
D.H. Lee, J.A. Lee, W.J. Lee, and S.O. Kim: Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films. Small 7, 95–100 (2011).
- 27.
C. Gomez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser: Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010).
- 28.
P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, and K.S. Novoselov: Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).
- 29.
L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, and A.K. Geim: Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).
- 30.
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008).
- 31.
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J-H. Ahn, P. Kim, J-Y. Choi, and B.H. Hong: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).
- 32.
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).
- 33.
M.P. Levendorf, C.S. Ruiz-Vargas, S. Garg, and J. Park: Transfer-free batch fabrication of single layer graphene transistors. Nano Lett. 9, 4479–4483 (2009).
- 34.
X. Dong, B. Li, A. Wei, X. Cao, M.B. Chan-Park, H. Zhang, L-J. Li, W. Huang, and P. Chen: One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition. Carbon 49, 2944–2949 (2011).
- 35.
Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, and F. Wei: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010).
- 36.
R.K. Paul, M. Ghazinejad, M. Penchev, J. Lin, M. Ozkan, and C.S. Ozkan: Synthesis of a pillared graphene nanostructure: A counterpart of three-dimensional carbon architectures. Small 6, 2309–2313 (2010).
- 37.
J. Lin, J. Zhong, D. Bao, J. Reiber-Kyle, and W. Wang: Supercapacitors based on pillared graphene nanostructures. J. Nanosci. Nanotechnol. 12, 1770–1775 (2012).
- 38.
I. Lahiri, R. Seelaboyina, J.Y. Hwang, R. Banerjee, and W. Choi: Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon 48, 1531–1538 (2010).
- 39.
G. Li, S. Chakrabarti, M. Schulz, and V. Shanov: Growth of aligned multiwalled carbon nanotubes on bulk copper substrates by chemical vapor deposition. J. Mater. Res. 24, 2813–2820 (2009).
- 40.
H. Wang, J. Feng, X. Hu, and K.M. Ng: Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor deposition. J. Phys. Chem. C 111, 12617–12624 (2007).
- 41.
L. Delzeit, C.V. Nguyen, B. Chen, R. Stevens, A. Cassell, J. Han, and M. Meyyappan: Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts. J. Phys. Chem. B 106, 5629–5635 (2002).
- 42.
P. Perrot, S. Arnout, and J. Vrestal: Copper–iron–oxygen; ternary alloy systems, in Landolt-börnstein database 11D3. Iron systems, Part 3, (Springer Materials, 2008), pp. 509–539.
- 43.
D.R. Askeland and P.P. Phule: The Science and Engineering of Materials (Thomson Learning, Independence, KY, 2005).
- 44.
J.J. De Yoreo and P.G. Vekilov: Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54, 57–93 (2003).
- 45.
Z.L. Wang, Y. Liu, and Z.Z. Kluwer: Handbook of Nanophase and Nanostructured Materials (Academic/Plenum Publishers, New York, NY, 2002).
- 46.
C.P. Wang, X.J. Liu, M. Jiang, I. Ohnuma, R. Kainuma, and K. Ishida: Thermodynamic database of the phase diagrams in copper base alloy systems. J. Phys. Chem. Solids 66, 256–260 (2005).
- 47.
M. Haluska, M. Hirscher, M. Becher, U. Dettlaff-Weglikowska, X. Chen, and S. Roth: Interaction of hydrogen isotopes with carbon nanostructures. Mater. Sci. Eng., B 108, 130–133 (2004).
- 48.
H.J. Park, J. Meyer, S. Roth, and V. Skákalová: Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 1088–1094 (2010).
- 49.
R.T.K. Baker: Catalytic growth of carbon filaments. Carbon 27, 315–323 (1989).
- 50.
A.M. Cassell, J.A. Raymakers, J. Kong, and H. Dai: Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103, 6484–6492 (1999).
- 51.
M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, and F. Rohmund: Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films. Appl. Phys. A 73, 409–418 (2001).
- 52.
Y. Li, X.B. Zhang, X.Y. Tao, J.M. Xu, W.Z. Huang, J.H. Luo, Z.Q. Luo, T. Li, F. Liu, Y. Bao, and H.J. Geise: Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon 43, 295–301 (2005).
- 53.
J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth: The structure of suspended graphene sheets. Nature 446, 60–63 (2007).
- 54.
J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl: On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101–109 (2007).
- 55.
D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, and S. Iijima: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987–994 (2006).
- 56.
Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).
- 57.
A. Yu, I. Roes, A. Davies, and Z. Chen: Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl. Phys. Lett. 96, 253105 (2010).
- 58.
L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L-F. Cui, and Y. Cui: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. U.S.A. 106, 21490–21494 (2009).
Acknowledgments
We gratefully acknowledge funding for this work by the CMMI Division of the National Science Foundation (Award No. 0800680), the Materials Research Science and Engineering Center (NSF-MRSEC) on Polymers (Award No. 0213695), the Nanoscale Science and Engineering Center (NSF-NSEC) on hierarchical manufacturing (Award No. 0531171), and the University of California, Riverside. First author (M.G.) also acknowledges the American Public Power Association DEED fellowship program.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ghazinejad, M., Guo, S., Wang, W. et al. Synchronous chemical vapor deposition of large-area hybrid graphene–carbon nanotube architectures. Journal of Materials Research 28, 958–968 (2013). https://doi.org/10.1557/jmr.2012.413
Received:
Accepted:
Published:
Issue Date: