Synchronous chemical vapor deposition of large-area hybrid graphene–carbon nanotube architectures


We report on the successful synthesis of a graphene–carbon nanotube (CNT) hybrid architecture by a parallel chemical vapor deposition (CVD) of the two carbon allotropes. The carbon hybrid is a three-dimensional (3D) nanostructure with tuneable architecture comprising vertically grown CNTs as pillars and a large-area graphene plane as the floor. The formation of CNTs and graphene occurs simultaneously in a single CVD growth that we describe as a synchronous synthesis method. Unique nature of the fabrication approach contributes significantly to the quality and composure of final nanohybrid. Detailed characterization elucidates the cohesive structure and robust contact between the graphene floor and the CNTs in the hybrid structure. The functionality of the synthesized graphene hybrid structure has been demonstrated by its incorporation into a supercapacitor cell. Our fabrication approach provides an attractive pathway for the fabrication of novel 3D hybrid nanostructures and efficient device integration.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8


  1. 1.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  2. 2.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  3. 3.

    Y. Zhang, Y-W. Tan, H.L. Stormer, and P. Kim: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    CAS  Google Scholar 

  4. 4.

    A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  Google Scholar 

  5. 5.

    J-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008).

    CAS  Google Scholar 

  6. 6.

    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008).

    CAS  Google Scholar 

  7. 7.

    C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    CAS  Google Scholar 

  8. 8.

    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007).

    CAS  Google Scholar 

  9. 9.

    X. Wang, L. Zhi, and K. Mullen: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2007).

    Google Scholar 

  10. 10.

    J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, and F. Wei: Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48, 487–493 (2009).

    Google Scholar 

  11. 11.

    J. Lin, D. Teweldebrhan, K. Ashraf, G. Liu, X. Jing, Z. Yan, R. Li, M. Ozkan, R.K. Lake, A.A. Balandin, and C.S. Ozkan: Gating of single-layer graphene with single-stranded deoxyribonucleic acids. Small 6, 1150–1155 (2010).

    CAS  Google Scholar 

  12. 12.

    E. Yoo, J. Kim, E. Hosono, H-S. Zhou, T. Kudo, and I. Honma: Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 8, 2277–2282 (2008).

    CAS  Google Scholar 

  13. 13.

    S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Google Scholar 

  14. 14.

    M.S. Dresselhaus, G. Dresselhaus, and A. Jorio: Unusual properties and structure of carbon nanotubes. Annu. Rev. Mater. 34, 247–278 (2004).

    CAS  Google Scholar 

  15. 15.

    V.N. Popov: Carbon nanotubes: Properties and application. Mater. Sci. Eng., R 43, 42 (2004).

    Google Scholar 

  16. 16.

    P.G. Collins, M.S. Arnold, and P. Avouris: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292, 706–709 (2001).

    CAS  Google Scholar 

  17. 17.

    A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai: Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    CAS  Google Scholar 

  18. 18.

    W.A. de Heer, A. Chatelain, and D. Ugarte: A carbon nanotube field-emission electron source. Science 270, 1179–1180 (1995).

    Google Scholar 

  19. 19.

    D.H. Lee, J.E. Kim, T.H. Han, J.W. Hwang, S. Jeon, S-Y. Choi, S.H. Hong, W.J. Lee, R.S. Ruoff, and S.O. Kim: Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films. Adv. Mater. 22, 1247–1252 (2010).

    CAS  Google Scholar 

  20. 20.

    H.Y. Jeong, D-S. Lee, H.K. Choi, D.H. Lee, J-E. Kim, J.Y. Lee, W.J. Lee, S.O. Kim, and S-Y. Choi: Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films. Appl. Phys. Lett. 96, 213105–213105-3 (2010).

    Google Scholar 

  21. 21.

    D. Yu and L. Dai: Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1, 467–470 (2009).

    Google Scholar 

  22. 22.

    V.C. Tung, L-M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner, and Y. Yang: Low-temperature solution processing of graphene carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 9, 1949–1955 (2009).

    CAS  Google Scholar 

  23. 23.

    G.K. Dimitrakakis, E. Tylianakis, and G.E. Froudakis: Pillared graphene: A new 3-D network nanostructure for enhanced hydrogen storage. Nano Lett. 8, 3166–3170 (2008).

    CAS  Google Scholar 

  24. 24.

    M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008).

    CAS  Google Scholar 

  25. 25.

    D.H. Lee, J.A. Lee, W.J. Lee, D.S. Choi, W.J. Lee, and S.O. Kim: Facile fabrication and field emission of metal-particle-decorated vertical N-doped carbon nanotube/graphene hybrid films. J. Phys. Chem. C 114, 21184–21189 (2010).

    CAS  Google Scholar 

  26. 26.

    D.H. Lee, J.A. Lee, W.J. Lee, and S.O. Kim: Flexible field emission of nitrogen-doped carbon nanotubes/reduced graphene hybrid films. Small 7, 95–100 (2011).

    CAS  Google Scholar 

  27. 27.

    C. Gomez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser: Atomic structure of reduced graphene oxide. Nano Lett. 10, 1144–1148 (2010).

    CAS  Google Scholar 

  28. 28.

    P. Blake, P.D. Brimicombe, R.R. Nair, T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, and K.S. Novoselov: Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).

    Google Scholar 

  29. 29.

    L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, R. Yang, E.W. Hill, K.S. Novoselov, and A.K. Geim: Chaotic Dirac billiard in graphene quantum dots. Science 320, 356–358 (2008).

    CAS  Google Scholar 

  30. 30.

    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008).

    Google Scholar 

  31. 31.

    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J-H. Ahn, P. Kim, J-Y. Choi, and B.H. Hong: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    CAS  Google Scholar 

  32. 32.

    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    CAS  Google Scholar 

  33. 33.

    M.P. Levendorf, C.S. Ruiz-Vargas, S. Garg, and J. Park: Transfer-free batch fabrication of single layer graphene transistors. Nano Lett. 9, 4479–4483 (2009).

    CAS  Google Scholar 

  34. 34.

    X. Dong, B. Li, A. Wei, X. Cao, M.B. Chan-Park, H. Zhang, L-J. Li, W. Huang, and P. Chen: One-step growth of graphene–carbon nanotube hybrid materials by chemical vapor deposition. Carbon 49, 2944–2949 (2011).

    CAS  Google Scholar 

  35. 35.

    Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, M. Zhang, W. Qian, and F. Wei: A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22, 3723–3728 (2010).

    CAS  Google Scholar 

  36. 36.

    R.K. Paul, M. Ghazinejad, M. Penchev, J. Lin, M. Ozkan, and C.S. Ozkan: Synthesis of a pillared graphene nanostructure: A counterpart of three-dimensional carbon architectures. Small 6, 2309–2313 (2010).

    CAS  Google Scholar 

  37. 37.

    J. Lin, J. Zhong, D. Bao, J. Reiber-Kyle, and W. Wang: Supercapacitors based on pillared graphene nanostructures. J. Nanosci. Nanotechnol. 12, 1770–1775 (2012).

    CAS  Google Scholar 

  38. 38.

    I. Lahiri, R. Seelaboyina, J.Y. Hwang, R. Banerjee, and W. Choi: Enhanced field emission from multi-walled carbon nanotubes grown on pure copper substrate. Carbon 48, 1531–1538 (2010).

    CAS  Google Scholar 

  39. 39.

    G. Li, S. Chakrabarti, M. Schulz, and V. Shanov: Growth of aligned multiwalled carbon nanotubes on bulk copper substrates by chemical vapor deposition. J. Mater. Res. 24, 2813–2820 (2009).

    CAS  Google Scholar 

  40. 40.

    H. Wang, J. Feng, X. Hu, and K.M. Ng: Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor deposition. J. Phys. Chem. C 111, 12617–12624 (2007).

    CAS  Google Scholar 

  41. 41.

    L. Delzeit, C.V. Nguyen, B. Chen, R. Stevens, A. Cassell, J. Han, and M. Meyyappan: Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts. J. Phys. Chem. B 106, 5629–5635 (2002).

    CAS  Google Scholar 

  42. 42.

    P. Perrot, S. Arnout, and J. Vrestal: Copper–iron–oxygen; ternary alloy systems, in Landolt-börnstein database 11D3. Iron systems, Part 3, (Springer Materials, 2008), pp. 509–539.

    Google Scholar 

  43. 43.

    D.R. Askeland and P.P. Phule: The Science and Engineering of Materials (Thomson Learning, Independence, KY, 2005).

    Google Scholar 

  44. 44.

    J.J. De Yoreo and P.G. Vekilov: Principles of crystal nucleation and growth. Rev. Mineral. Geochem. 54, 57–93 (2003).

    Google Scholar 

  45. 45.

    Z.L. Wang, Y. Liu, and Z.Z. Kluwer: Handbook of Nanophase and Nanostructured Materials (Academic/Plenum Publishers, New York, NY, 2002).

    Google Scholar 

  46. 46.

    C.P. Wang, X.J. Liu, M. Jiang, I. Ohnuma, R. Kainuma, and K. Ishida: Thermodynamic database of the phase diagrams in copper base alloy systems. J. Phys. Chem. Solids 66, 256–260 (2005).

    CAS  Google Scholar 

  47. 47.

    M. Haluska, M. Hirscher, M. Becher, U. Dettlaff-Weglikowska, X. Chen, and S. Roth: Interaction of hydrogen isotopes with carbon nanostructures. Mater. Sci. Eng., B 108, 130–133 (2004).

    Google Scholar 

  48. 48.

    H.J. Park, J. Meyer, S. Roth, and V. Skákalová: Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 1088–1094 (2010).

    CAS  Google Scholar 

  49. 49.

    R.T.K. Baker: Catalytic growth of carbon filaments. Carbon 27, 315–323 (1989).

    CAS  Google Scholar 

  50. 50.

    A.M. Cassell, J.A. Raymakers, J. Kong, and H. Dai: Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B 103, 6484–6492 (1999).

    CAS  Google Scholar 

  51. 51.

    M. Sveningsson, R.E. Morjan, O.A. Nerushev, Y. Sato, J. Bäckström, E.E.B. Campbell, and F. Rohmund: Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films. Appl. Phys. A 73, 409–418 (2001).

    CAS  Google Scholar 

  52. 52.

    Y. Li, X.B. Zhang, X.Y. Tao, J.M. Xu, W.Z. Huang, J.H. Luo, Z.Q. Luo, T. Li, F. Liu, Y. Bao, and H.J. Geise: Mass production of high-quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon 43, 295–301 (2005).

    CAS  Google Scholar 

  53. 53.

    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth: The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    CAS  Google Scholar 

  54. 54.

    J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, D. Obergfell, S. Roth, C. Girit, and A. Zettl: On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101–109 (2007).

    CAS  Google Scholar 

  55. 55.

    D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, and S. Iijima: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987–994 (2006).

    CAS  Google Scholar 

  56. 56.

    Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, and R.S. Ruoff: Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).

    CAS  Google Scholar 

  57. 57.

    A. Yu, I. Roes, A. Davies, and Z. Chen: Ultrathin, transparent, and flexible graphene films for supercapacitor application. Appl. Phys. Lett. 96, 253105 (2010).

    Google Scholar 

  58. 58.

    L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L-F. Cui, and Y. Cui: Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. U.S.A. 106, 21490–21494 (2009).

    CAS  Google Scholar 

Download references


We gratefully acknowledge funding for this work by the CMMI Division of the National Science Foundation (Award No. 0800680), the Materials Research Science and Engineering Center (NSF-MRSEC) on Polymers (Award No. 0213695), the Nanoscale Science and Engineering Center (NSF-NSEC) on hierarchical manufacturing (Award No. 0531171), and the University of California, Riverside. First author (M.G.) also acknowledges the American Public Power Association DEED fellowship program.

Author information



Corresponding author

Correspondence to Shirui Guo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghazinejad, M., Guo, S., Wang, W. et al. Synchronous chemical vapor deposition of large-area hybrid graphene–carbon nanotube architectures. Journal of Materials Research 28, 958–968 (2013).

Download citation