Effects of geometric and crystal structures on the photoelectrical properties of highly ordered TiO2 nanotube arrays

Abstract

The photoelectrical properties of highly ordered TiO2 nanotube (TNT) arrays have been systematically and quantitatively studied and found to be closely related to their geometric and crystal structures. The geometric characteristics, including the nanotube diameter and length, were modified by adjusting the anodization potentials and durations, while the crystal structure was modified by thermal annealing at different temperatures. The nanotube array samples with the mixed crystalline phases possess higher photoconversion efficiency than those with the single anatase or rutile phase. The optimal content of rutile phase is about twice of that of anatase phase. In terms of the influence of the geometric structure, the TNT arrays with larger inner diameters and longer tube lengths have better photoelectrical properties. A geometric roughness factor has been applied to describe the combinative effect of the geometric characteristics. The TNT sample with the geometric roughness factor of 125.32 shows the superior photoconversion efficiency of 13.2%. The underlying mechanism has also been discussed in detail.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

References

  1. 1.

    N. Baram and Y. Ein-Eli: Electrochemical impedance spectroscopy of porous TiO2 for photocatalyst applications. J. Phys. Chem. C 114, 9781 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    K. Shankar, M. Paulose, G.K. Mor, O.K. Varghese, and C.A. Grimes: A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays. J. Phys. D: Appl. Phys. 38, 3543 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    M. Law, L.E. Greene, J.C. Johnson, R. Saykallyi, and P.D. Yang: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    A.J. Frank, N. Kopidakis, and J. van de Lagenmaat: Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties. Coord. Chem. Rev. 248, 1165 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, P.K. Mor, T.A. Latempa, A. Fitzgerald, and C.A. Grimes: Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 110, 16179 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    N.K. Allam, A.J. Poncher, and M.A. El-Sayed: Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting. ACS Nano 5, 5056 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki: TiO2 nanotubes: Self-organized electrochemical formation, properties and applications. Curr. Opin. Solid State Mater. Sci. 11, 4 (2007).

    Article  Google Scholar 

  9. 9.

    C.A. Grimes: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17, 1451 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    S. Yoriya, M. Paulose, O.K. Varghese, G.K. Mor, and C.A. Grimes: Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes. J. Phys. Chem. C 111, 13770 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    D.W. Gong, C.A. Grimes, and O.K. Varghese: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3334 (2001).

    Article  Google Scholar 

  12. 12.

    K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, and C.A. Grimes: Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18, 065707 (2007).

    Article  Google Scholar 

  13. 13.

    S.K. Mohapatra, K.S. Raja, V.K. Mahajan, and M. Misra: Efficient photoelectrolysis of water using TiO2 nanotube arrays by minimizing recombination losses with organic additives. J. Phys. Chem. C 112, 11008 (2008).

    Article  Google Scholar 

  14. 14.

    L.D. Sun, S. Zhang, X.W. Sun, and X.D. He: Effect of geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells. J. Nanosci. Nanotechnol. 10, 4554 (2010).

    Google Scholar 

  15. 15.

    A. Atyaoui, L. Bousselmi, H. Cachet, P. Pu, and E.M.M. Sutter: Influence of geometric and electronic characteristics of TiO2 electrodes with nanotubular array on their photocatalytic efficiencies. J. Photochem. Photobiol. Chem. 224, 72 (2011).

    Article  Google Scholar 

  16. 16.

    W. Zhu, X. Liu, H.Q. Liu, D. Tong, J.Y. Yang, and J.Y. Peng: An effect approach to control the morphology and the adhesion properties of anodized TiO2 nanotube arrays for improved photoconversion efficiency. Electrochim. Acta 56, 2619 (2011).

    Google Scholar 

  17. 17.

    X.H. Tang and D.Y. Li: Fabrication, geometry, and mechanical properties of highly ordered TiO2 nanotubular arrays. J. Phys. Chem. C 113, 7107 (2009).

    CAS  Article  Google Scholar 

  18. 18.

    K. Shankar, G.K. Mor, M. Paulose, O.K. Varghese, and C.A. Grimes: Effect of device geometry on the performance of TiO2 nanotube array-organic semiconductor double heterojunction solar cells. J. Non-Cryst. Solids 354, 2768 (2008).

    Article  Google Scholar 

  19. 19.

    G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, and C.A. Grimes: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, metal properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2035 (2006).

    Article  Google Scholar 

  20. 20.

    Y. Sun, K.P. Yan, G.X. Wang, W. Guo, and T.L. Ma: Effect of annealing temperature on the hydrogen production of TiO2 nanotube arrays in a two-compartment photoelectrochemical cell. J. Phys. Chem. C 115, 12846 (2011).

    Google Scholar 

  21. 21.

    H.Z. Zhang and J.F. Banfield: Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 104, 3482 (2000).

    Google Scholar 

  22. 22.

    N.K. Allam and C.A. Grimes: Effect of rapid infrared annealing on the photoelectrochemical properties of anodically fabricated TiO2 nanotube arrays. J. Phys. Chem. C 113, 7998 (2009).

    Article  Google Scholar 

  23. 23.

    Z.B. Chen, T.F. Jaramillo, T.G. Deutsch, A. Kleiman-Shwarsctein, A.J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E.W. McFarland, K. Domen, and E.L. Miller: Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 7 (2010).

    Google Scholar 

  24. 24.

    C.M. Run, M. Paulose, O.K. Vrghese, and C.A. Grimes: Enhanced photoelectrochemica-response in highly ordered TiO2 nanotube-arrays anodized in boric acid containing electrolyte. Sol. Energy Mater. Sol. Cells 90, 1291 (2006).

    Google Scholar 

  25. 25.

    X.B. Chen, S.H. Shen, L.J. Guo, and S.S. Mao: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6528 (2010).

    Google Scholar 

  26. 26.

    A. Kar, R. Pando, and V.R. Subramanian: Photoelectrochemical response of anodized titanium oxide films. J. Mater. Res. 25, 82 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X.L. Feng, M. Paulose, J.A. Seabold, K.-S. Choi, and C.A. Grimes: Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 113, 6335 (2009).

    Article  Google Scholar 

  28. 28.

    K. Zhu, N.R. Neale, A. Miedaner, and A.J. Frank: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 71 (2007).

    Google Scholar 

  29. 29.

    M. Kawakita, J. Kawakita, Y. Sakka, and T. Shinohara: Photoelectrochemical evaluation of anatase TiO2 polycrystalline aggregation layers with different crystalline orientations. J. Mater. Res. 25, 67 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Mr. Guizhen Wang for the analysis of scanning electron microscopy in the Analytical and Testing Center of Hainan University. This work was supported by Program for New Century Excellent Talents in University (NCET-09-0110), the Key Project of Chinese Ministry of Education (210171), and the National Nature Science Foundation of China (51162007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shiwei Lin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, D., Lin, S., Li, S. et al. Effects of geometric and crystal structures on the photoelectrical properties of highly ordered TiO2 nanotube arrays. Journal of Materials Research 27, 1029–1036 (2012). https://doi.org/10.1557/jmr.2012.38

Download citation