Selective electrodeposition of Ni into the intertubular voids of anodic TiO2 nanotubes for improved photocatalytic properties


We report on Ni-modified TiO2 nanotubes with improved photocatalytic properties. Using the as-anodized TiO2 nanotubes as templates, Ni was electrodeposited using pulsed current waveforms. It was found that the Ni deposition was first initiated at the bottoms of the intertubular voids and then grew upward, resulting in a Ni/TiO2 coaxial nanostructure with Ni wrapping around the TiO2 nanotubes. Moreover, the tube inside was kept empty and tube openings unclogged for the fabricated Ni/TiO2 nanocomposites. Further photodegradation tests using methyl red revealed that the fabricated Ni/TiO2 nanocomposites possess higher photocatalytic efficiency than the counterparts of pristine TiO2 nanotubes. The observed improved photocatalytic efficiency is ascribed to the Schottky barriers formed between Ni and TiO2.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.


  1. 1.

    D. Kim, P. Roy, K. Lee, and P. Schmuki: Dye-sensitized solar cells using anodic TiO2 mesosponge: Improved efficiency by TiCl4 treatment. Electrochem. Commun. 12, 574 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    C.J. Lin, W.Y. Yu, and S.H. Chien: Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 1073 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    F. Sauvage, F. Di Fonzo, A.L. Bassi, C.S. Casari, V. Russo, G. Divitini, C. Ducati, C.E. Bottani, P. Comte, and M. Graetzel: Hierarchical TiO2 photoanode for dye-sensitized solar cells. Nano Lett. 10, 2562 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    D.A. Wang, T.C. Hu, L.T. Hu, B. Yu, Y.Q. Xia, F. Zhou, and W.M. Liu: Microstructured arrays of TiO2 Nanotubes for improved photo-electrocatalysis and mechanical stability. Adv. Funct. Mater. 19, 1930 (2009).

    Article  Google Scholar 

  5. 5.

    H.A. Hamedani, N.K. Allam, H. Garmestani, and M.A. El-Sayed: Electrochemical fabrication of strontium-doped TiO2 nanotube array electrodes and investigation of their photoelectrochemical properties. J. Phys. Chem. C 115, 13480 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    G.M. Wang, H.Y. Wang, Y.C. Ling, Y.C. Tang, X.Y. Yang, R.C. Fitzmorris, C.C. Wang, J.Z. Zhang, and Y. Li: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    G.F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J.L. Tirado, and P. Knauth: Alternative Li-ion battery electrode based on self-organized titania nanotubes. Chem. Mater. 21, 63 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    M. Salari, S.H. Aboutalebi, K. Konstantinov, and H.K. Liu: A highly ordered titania nanotube array as a supercapacitor electrode. Phys. Chem. Chem. Phys. 13, 5038 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    A. Ghicov, S.P. Alba, J.M. Macak, and P. Schmuki: High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes. Small 4, 1063 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    A. Ghicov, H. Tsuchiya, R. Hahn, J.M. Macak, A.G. Munoz, and P. Schmuki: TiO2 nanotubes: H+ insertion and strong electrochromic effects. Electrochem. Commun. 8, 528 (2006).

    CAS  Article  Google Scholar 

  11. 11.

    R. Hahn, A. Ghicov, H. Tsuchiya, J.M. Macak, A.G. Munoz, and P. Schmuki: Lithium-ion insertion in anodic TiO2 nanotubes resulting in high electrochromic contrast. Phys. Status Solidi A 204, 1281 (2007).

    CAS  Article  Google Scholar 

  12. 12.

    Y. Xie, L. Zhou, C. Huang, H. Huang, and J. Lu: Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application. Electrochim. Acta 53, 3643 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    S. Banerjee, S.K. Mohapatra, P.P. Das, and M. Misra: Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20, 6784 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    J. Zhang, J.H. Bang, C.C. Tang, and P.V. Kamat: Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance. ACS Nano 4, 387 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    A.I. Kontos, V. Likodimos, T. Stergiopoulos, D.S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki: Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles. Chem. Mater. 21, 662 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    Z.R. Hesabi, N.K. Allam, K. Dahmen, H. Garmestani, and M.A. El-Sayed: Self-standing crystalline TiO2 nanotubes/CNTs heterojunction membrane: Synthesis and characterization. ACS Appl. Mater. Interfaces 3, 952 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    J.M. Macak, B.G. Gong, M. Hueppe, and P. Schmuki: Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv. Mater. 19, 3027 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    J.A. Seabold, K. Shankar, R.H.T. Wilke, M. Paulose, O.K. Varghese, C.A. Grimes, and K.S. Choi: Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem. Mater. 20, 5266 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    D.A. Wang, Q.A. Ye, B. Yu, and F. Zhou: Towards chemically bonded p-n heterojunctions through surface initiated electrodeposition of p-type conducting polymer inside TiO2 nanotubes. J. Mater. Chem. 20, 6910 (2010).

    CAS  Article  Google Scholar 

  20. 20.

    J.M. Macak, M. Zlamal, J. Krysa, and P. Schmuki: Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3, 300 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    P.R. Harvey, R. Rudham, and S. Ward: Photocatalytic oxidation of liquid alcohols and binary alcohol mixtures by rutile. J. Chem. Soc., Faraday Trans. 79, 2975 (1983).

    CAS  Article  Google Scholar 

  22. 22.

    K. Ikeda, H. Sakai, R. Baba, K. Hashimoto, and A. Fujishima: Photocatalytic reactions involving radical chain reactions using microelectrodes. J. Phys. Chem. B 101, 2617 (1997).

    CAS  Article  Google Scholar 

  23. 23.

    X.B. Chen, L. Liu, P.Y. Yu, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    G. Liu, L.Z. Wang, H.G. Yang, H.M. Cheng, and G.Q. Lu: Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem. 20, 831 (2009).

    Article  Google Scholar 

  25. 25.

    D. Zhang: Chemical synthesis of Ni/TiO2 nanophotocatalyst for UV/visible light assisted degradation of organic dye in aqueous solution. J. Sol-Gel Sci. Technol. 58, 312 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    R.J. Tayade, R.G. Kulkarni, and R.V. Jasra: Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind. Eng. Chem. Res. 45, 5231 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    H. Chen, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, and Y.B. Zhang: Fabrication of TiO2-Pt coaxial nanotube array Schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution. J. Phys. Chem. C 112, 9285 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    K.P. Xie, L. Sun, C.L. Wang, Y.K. Lai, M.Y. Wang, H.B. Chen, and C.J. Lin: Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim. Acta 55, 7211 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    I. Paramasivam, J.M. Macak, and P. Schmuki: Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles. Electrochem. Commun. 10, 71 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    M.K. Seery, R. George, P. Floris, and S.C. Pillai: Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis. J. Photochem. Photobiol., A 189, 258 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    N. Sobana, M. Muruganadham, and M. Swaminathan: Nano-Ag particles doped TiO2 for efficient photodegradation of direct azo dyes. J. Mol. Catal. A: Chem. 258, 124 (2006).

    CAS  Article  Google Scholar 

  32. 32.

    A. Sclafani and J.M. Herrmann: Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and rutile) in organic and aqueous media. J. Photochem. Photobiol., A 113, 181 (1998).

    CAS  Article  Google Scholar 

  33. 33.

    V. Iliev, D. Tomova, L. Bilyarska, and L. Petrov: Photooxidation of xylenol orange in the presence of palladium-modified TiO2 catalysts. Catal. Commun. 5, 759 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    E. Moti, M.H. Shariat, and M.E. Bahrololoom: Electrodeposition of nanocrystalline nickel by using rotating cylindrical electrodes. Mater. Chem. Phys. 111, 469 (2008).

    CAS  Article  Google Scholar 

  35. 35.

    C.X. Wang, L.W. Yin, L.Y. Zhang, and R. Gao: Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J. Phys. Chem. C 114, 4408 (2010).

    CAS  Article  Google Scholar 

  36. 36.

    Y.H. Zhang, Y.N. Yang, P. Xiao, X.N. Zhang, L. Lu, and L. Li: Preparation of Ni nanoparticle-TiO2 nanotube composite by pulse electrodeposition. Mater. Lett. 63, 2429 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    H.T. Fang, M. Liu, D.W. Wang, T. Sun, D.S. Guan, F. Li, J.G. Zhou, T.K. Sham, and H.M. Cheng: Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology 20, 225701 (2009).

    Article  Google Scholar 

  38. 38.

    J. Chen, D.F. Ollis, W.H. Rulkens, and H. Bruning: Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (II): Photocatalytic mechanisms. Water Res. 33, 669 (1999).

    CAS  Article  Google Scholar 

Download references


This work was supported by City University of Hong Kong (Projects 9667056 and 7002741).

Author information



Corresponding author

Correspondence to Yang Yang Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liang, F., Zhang, J., Zheng, L. et al. Selective electrodeposition of Ni into the intertubular voids of anodic TiO2 nanotubes for improved photocatalytic properties. Journal of Materials Research 28, 405–410 (2013).

Download citation