One-pot solvothermal method to prepare functionalized Fe3O4 nanoparticles for bioseparation

Abstract

Surface-functionalized magnetic nanoparticles were prepared by a facile one-pot solvothermal method in ethylene glycol solution. Zeta value, size, and magnetic properties could be well tuned by introducing different functional group molecules. Characterizations, including transmission electronic microscopy, scanning electronic microscopy, thermogravimetric analysis, x-ray powder diffraction and vibrating sample magnetometer, and Fourier transform infrared spectrophotometer demonstrated the efficiency of this simple and general synthesis strategy. The hydrophilic magnetic nanoparticles with various surface functional groups and zeta values were evidenced as excellent candidates for bioseparation by extracting DNA molecules from a model mixture of cell fractures.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

References

  1. 1.

    S.J. Son, J. Reichel, B. He, M. Schuchman, and S.B. Lee: Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc. 127(20), 7316 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    W. Fang, X. Chen, and N. Zheng: Superparamagnetic core-shell polymer particles for efficient purification of his-tagged proteins. J. Mater. Chem. 20(39), 8624 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    J. Chun, S.W. Seo, G.Y. Jung, and J. Lee: Easy access to efficient magnetically recyclable separation of histidine-tagged proteins using superparamagnetic nickel ferrite nanoparticle clusters. J. Mater. Chem. 21(18), 6713 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    A-H. Lu, E.L. Salabas, and F. Schüth: Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46(8), 1222 (2007).

    CAS  Article  Google Scholar 

  5. 5.

    S. Berensmeier: Magnetic particles for the separation and purification of nucleic acids. Appl. Microbiol. Biotechnol. 73(3), 495 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    R. Xu, G. Sun, Q. Li, E. Wang, and J. Gu: A dual-responsive superparamagnetic Fe3O4/Silica/PAH/PSS material used for controlled release of chemotherapeutic agent, keggin polyoxotungstate, PM-19. Solid State Sci. 12, 1720 (2010).

    Article  CAS  Google Scholar 

  7. 7.

    D. Chen, M. Jiang, N. Li, H. Gu, Q. Xu, J. Ge, X. Xia, and J. Lu: Modification of magnetic silica/iron oxide nanocomposites with fluorescent polymethacrylic acid for cancer targeting and drug delivery. J. Mater. Chem. 20(31), 6422 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Z. Xu, Y. Feng, X. Liu, M. Guan, C. Zhao, and H. Zhang: Synthesis and characterization of Fe3O4@SiO2@poly-l-alanine, peptide brush-magnetic microspheres through NCA chemistry for drug delivery and enrichment of BSA. Colloids Surf. B 81, 503 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    B. Luo, S. Xu, A. Luo, W.R. Wang, S.L. Wang, J. Guo, Y. Lin, D.Y. Zhao, and C.C. Wang: Mesoporous biocompatible and acid-degradable magnetic colloidal nanocrystal clusters with sustainable stability and high hydrophobic drug loading capacity. ACS Nano 5(2), 1428 (2011).

    CAS  Article  Google Scholar 

  10. 10.

    P. Govindaiah, T.J. Park, Y.J. Jung, S.J. Lee, D.Y. Ryu, J.H. Kim, and I.W. Cheong: Luminescent iron oxide nanoparticles prepared by one-pot aphen-functionalization. Macromol. Res. 18(11), 1109 (2010).

    CAS  Article  Google Scholar 

  11. 11.

    M.M. Lin, S. Li, H.H. Kim, H. Kim, H.B. Lee, and M. Muhammed: Complete separation of magnetic nanoparticles via chemical cleavage of dextran by ethylenediamine for intracellular uptake. J. Mater. Chem. 20(3), 444 (2009).

    Article  Google Scholar 

  12. 12.

    J. Liu, Z. Sun, Y. Deng, Y. Zou, C. Li, X. Guo, L. Xiong, Y. Gao, F. Li, and D. Zhao: Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem. Int. Ed. 121(32), 5989 (2009).

    Article  Google Scholar 

  13. 13.

    J.K. Oh and J.M. Park: Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Prog. Polym. Sci. 36, 168 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    S. Xuan, F. Wang, J.M.Y. Lai, K.W.Y. Sham, Y.X.J. Wang, S.F. Lee, J.C. Yu, C.H.K. Cheng, and K.C.F. Leung: Synthesis of biocompatible, mesoporous Fe3O4 nano/microspheres with large surface area for magnetic resonance imaging and therapeutic applications. ACS Appl. Mater. Interfaces 3, 237 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Z. Shi, K.G. Neoh, E.T. Kang, B. Shuter, S-C. Wang, C. Poh, and W. Wang: (Carboxymethyl)chitosan-modified superparamagnetic iron oxide nanoparticles for magnetic resonance imaging of stem cells. ACS Appl. Mater. Interfaces 1(2), 328 (2008).

    Article  CAS  Google Scholar 

  16. 16.

    A.K. Gupta and S. Wells: Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci. 3(1), 66 (2004).

    Article  Google Scholar 

  17. 17.

    A.K. Gupta and M. Gupta: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    G.M. da Costa, E. De Grave, P.M.A. de Bakker, and R.E. Vandenberghe: Synthesis and characterization of some iron oxides by sol-gel method. J. Solid State Chem. 113(2), 405 (1994).

    CAS  Article  Google Scholar 

  19. 19.

    S.R. Dave and X. Gao: Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: A versatile and evolving technology. Nanomed. Nanobiotechnol. 1(6), 583 (2009).

    CAS  Article  Google Scholar 

  20. 20.

    X. Teng and H. Yang: Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core-shell nanoparticles. J. Am. Chem. Soc. 125(47), 14559 (2003).

    CAS  Article  Google Scholar 

  21. 21.

    J. Ge, Y. Hu, M. Biasini, W.P. Beyermann, and Y. Yin: Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem. Int. Ed. 46(23), 4342 (2007).

    CAS  Article  Google Scholar 

  22. 22.

    L. Wang, J. Bao, L. Wang, F. Zhang, and Y. Li: One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chemistry 12(24), 6341 (2006).

    CAS  Article  Google Scholar 

  23. 23.

    B. Tang, G. Wang, L. Zhuo, J. Ge, and L. Cui: Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of γ-Fe2O3 nanorods. Inorg. Chem. 45(13), 5196 (2006).

    CAS  Article  Google Scholar 

  24. 24.

    T. Taniguchi, K. Nakagawa, T. Watanabe, N. Matsushita, and M. Yoshimura: Hydrothermal growth of fatty acid stabilized iron oxide nanocrystals. J. Phys. Chem. C 113(3), 839 (2008).

    Article  CAS  Google Scholar 

  25. 25.

    H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, and Y. Li: Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 117(18), 2842 (2005).

    Article  Google Scholar 

  26. 26.

    J. Ge, Y. Hu, T. Zhang, and Y. Yin: Superparamagnetic composite colloids with anisotropic structures. J. Am. Chem. Soc. 129(29), 8974 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Q. Yuan, R. Venkatasubramanian, S. Hein, and R.D.K. Misra: A stimulus-responsive magnetic nanoparticle drug carrier: Magnetite encapsulated by chitosan-grafted-copolymer. Acta Biomater. 4(4), 1024 (2008).

    CAS  Article  Google Scholar 

  28. 28.

    X. Wang, L. Zhou, Y. Ma, X. Li, and H. Gu: Control of aggregate size of polyethyleneimine-coated magnetic nanoparticles for magnetofection. Nano Res. 2(5), 365 (2009).

    CAS  Article  Google Scholar 

  29. 29.

    G-Y. Li, K-L. Huang, Y-R. Jiang, P. Ding, and D-L. Yang: Preparation and characterization of carboxyl functionalization of chitosan derivative magnetic nanoparticles. Biochem. Eng. J. 40(3), 408 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    M. Mikhaylova, D.K. Kim, C.C. Berry, A. Zagorodni, M. Toprak, A.S.G. Curtis, and M. Muhammed: BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater. 16(12), 2344 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    P. Tartaj, T. Gonzalez-Carreno, A.F. Rebolledo, O. Bomati-Miguel, and C.J. Serna: Direct aerosol synthesis of carboxy-functionalized iron oxide colloids displaying reversible magnetic behavior. J. Colloid Interface Sci. 309(1), 68 (2007).

    CAS  Article  Google Scholar 

  32. 32.

    A. Yourdkhani and G. Caruntu: Highly ordered transition metal ferrite nanotube arrays synthesized by template-assisted liquid phase deposition. J. Mater. Chem. 21(20), 7145 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    X. Yu, Y. Shan, B. Du, and K. Chen: One-pot and template-free fabrication of dendritic and octahedral single-crystal magnetites. CrystEngComm. 13, 1525 (2011).

    CAS  Article  Google Scholar 

  34. 34.

    J. Liang, L. Li, M. Luo, and Y. Wang: Fabrication of Fe3O4 octahedra by a triethanolamine-assisted hydrothermal process. Cryst. Res. Technol. 46(1), 95 (2011).

    CAS  Article  Google Scholar 

  35. 35.

    X. Wang, Z. Zhao, J. Qu, Z. Wang, and J. Qiu: Shape-control and characterization of magnetite prepared via a one-step solvothermal route. Cryst. Growth Des. 10, 2863 (2010).

    CAS  Article  Google Scholar 

  36. 36.

    W. Cheng, K. Tang, and J. Sheng: Highly water-soluble superparamagnetic ferrite colloidal spheres with tunable composition and size. Chem. Eur. J. 16(12), 3608 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    H. Sun, H. Wei, H. Zhang, Y. Ning, Y. Tang, F. Zhai, and B. Yang: Self-assembly of CdTe nanoparticles into dendrite structure: A microsensor to Hg2+. Langmuir 27(3), 1136 (2011).

    Article  CAS  Google Scholar 

  38. 38.

    Y. Li, C. Dong, J. Chu, J. Qi, and X. Li: Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization: A facile three-in-one system for recognition and separation of endocrine disrupting chemicals. Nanoscale 3, 280 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    W.H. Zhou, C.H. Lu, X.C. Guo, F.R. Chen, H.H. Yang, and X.R. Wang: Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. J. Mater. Chem. 20(5), 880 (2009).

    Article  Google Scholar 

  40. 40.

    X. Song, Y. Yang, J. Liu, and H. Zhao: PS colloidal particles stabilized by graphene oxide. Langmuir 27(3), 1186 (2011).

    CAS  Article  Google Scholar 

  41. 41.

    C. Wang, S. Tao, W. Wei, C. Meng, F. Liu, and M. Han: Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution. J. Mater. Chem. 20(22), 4635 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    H. Chen, Y. Zhao, M. Yang, J. He, P.K. Chu, J. Zhang, and S. Wu: Glycine-assisted hydrothermal synthesis of peculiar porous alpha-Fe2O3 nanospheres with excellent gas-sensing properties. Anal. Chim. Acta 659(1–2), 266 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    K. Zhou, Y. Zhu, X. Yang, and C. Li: One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. N. J. Chem. 34(12), 2950 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith: A new class of polymers: Starburst-dendritic macromolecules. Polym. J. 17(1), 117 (1985).

    CAS  Article  Google Scholar 

  45. 45.

    D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith: Dendritic macromolecules: Synthesis of starburst dendrimers. Macromolecules 19(9), 2466 (1986).

    CAS  Article  Google Scholar 

  46. 46.

    Z. Zhang, Y. Cui, and Q. Wan: Surface modification of magnetic silica microspheres and its application to the isolation of plant genomic nucleic acids. Chin. J. Anal. Chem. 35(1), 31 (2007).

    CAS  Article  Google Scholar 

  47. 47.

    A.G. Roca, J.F. Marco, M.P. Morales, and C.J. Serna: Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J. Phys. Chem. C 111(50), 18577 (2007).

    CAS  Article  Google Scholar 

  48. 48.

    S. Wan, J. Huang, H. Yan, and K. Liu: Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater. Chem. 16(3), 298 (2006).

    CAS  Article  Google Scholar 

  49. 49.

    L.B. Hoch, E.J. Mack, B.W. Hydutsky, J.M. Hershman, J.M. Skluzacek, and T.E. Mallouk: Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ. Sci. Technol. 42(7), 2600 (2008).

    CAS  Article  Google Scholar 

  50. 50.

    J. Zhi, Y. Wang, Y. Lu, J. Ma, and G. Luo: In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym. 66(12), 1552 (2006).

    CAS  Article  Google Scholar 

  51. 51.

    S.H. Wang, X. Shi, M. Van Antwerp, Z. Cao, S.D. Swanson, X. Bi, and J.R. Baker Jr.: Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv. Funct. Mater. 17(16), 3043 (2007).

    CAS  Article  Google Scholar 

  52. 52.

    R. Narain, M. Gonzales, A.S. Hoffman, P.S. Stayton, and K.M. Krishnan: Synthesis of monodisperse biotinylated p (NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin. Langmuir 23(11), 6299 (2007).

    CAS  Article  Google Scholar 

  53. 53.

    S. McBain, H. Yiu, A. El Haj, and J. Dobson: Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J. Mater. Chem. 17(24), 2561 (2007).

    CAS  Article  Google Scholar 

  54. 54.

    J.I. Taylor, C.D. Hurst, M.J. Davies, N. Sachsinger, and I.J. Bruce: Application of magnetite and silica-magnetite composites to the isolation of genomic DNA. J. Chromatogr. A 890(1), 159 (2000).

    CAS  Article  Google Scholar 

  55. 55.

    B. Yoza, M. Matsumoto, and T. Matsunaga: DNA extraction using modified bacterial magnetic particles in the presence of amino silane compound. J. Biotechnol. 94(3), 217 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China, the Foundation for Authors of National Excellent Doctoral Dissertations of People’s Republic of China, the Program for New Century Excellent Talents in Universities, the 973 Program (2011CBA00503, 2011CB932403), the National Transgenic Major Program (2008ZX08012-001), and the Fundamental Research Funds for the Central Universities.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guoxin Zhang or Xiaoming Sun or Tianwei Tan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, G., Qie, F., Hou, J. et al. One-pot solvothermal method to prepare functionalized Fe3O4 nanoparticles for bioseparation. Journal of Materials Research 27, 1006–1013 (2012). https://doi.org/10.1557/jmr.2012.35

Download citation