Varied linear phason strain and its induced domain structure in quasicrystalline precipitates of Zr-Al-Ni-Cu-Nb bulk metallic glass matrix composites

Abstract

Quasicrystalline precipitates in ZrAlNiCuNb alloy were systematically studied by transmission electron microscopy. It was found that precipitates always contain various linear phason strains. By electron diffraction analysis, two types of linear phason strain with two different directions perpendicular to the incident beam described by strain matrices with only one nonzero element were identified. After measuring the deviations of diffraction spots and quantitatively fitting against their perpendicular components of the reciprocal lattice vectors, the phason strain matrices were obtained. Domain structures formed as a result of linear phason strain variants along directions with equal probability. Electron diffraction and high-resolution electron imaging provide supportive evidence of this result.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
Table I.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

References

  1. 1.

    Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, and W.H. Wang: Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007).

    CAS  Article  Google Scholar 

  2. 2.

    X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, H.M. Chen, J.S.C. Jang, and P.K. Liaw: Two-glassy-phase bulk metallic glass with remarkable plasticity. Appl. Phys. Lett. 91, 131901 (2007).

    Article  CAS  Google Scholar 

  3. 3.

    A. Inoue and A. Takeuchi: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    M. Lee, C.M. Lee, K.R. Lee, E. Ma, and J.C. Lee: Networked interpenetrating connections of icosahedra: Effects on shear transformations in metallic glass. Acta Mater. 59, 159 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Y.Q. Cheng and E. Ma: Atomic-level structure and structure-property relationship in metallic glasses. Prog. Mater. Sci. 56, 379 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    L. Zhang, Y.Q. Cheng, A.J. Cao, J. Xu, and E. Ma: Bulk metallic glasses with large plasticity: Composition design from the structural perspective. Acta Mater. 57, 1154 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    H. Tanaka: Relationship among glass-forming ability, fragility and short-range bond ordering of liquids. J. Non-Cryst. Solids 351, 678 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    T.C. Hufnagel and S. Brennan: Short- and medium-range order in (Zr70Cu20Ni10)90-xTaxAl10 bulk amorphous alloys. Phys. Rev. B 67, 014203 (2003).

    Article  CAS  Google Scholar 

  9. 9.

    W.K. Luo, H.W. Sheng, F.M. Alamgir, J.M. Bai, J.H. He, and E. Ma: Icosahedral short-range order in amorphous alloys. Phys. Rev. Lett. 92, 145502 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    J. Saida, M. Matsushita, and A. Inoue: Nano icosahedral quasi-crystals in Zr-based glassy alloys. Intermetallics 10, 1089 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    J. Saida, M. Matsushita, and A. Inoue: Direct observation of icosahedral cluster in Zr70Pd30 binary glassy alloy. Appl. Phys. Lett. 79, 412 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    Z.W. Zhu, L. Gu, G.Q. Xie, W. Zhang, A. Inoue, H.F. Zhang, and Z.Q. Hu: Relation between icosahedral short-range ordering and plastic deformation in Zr-Nb-Cu-Ni-Al bulk metallic glasses. Acta Mater. 59, 2814 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    H.T. Ren, J. Pan, Q. Chen, K.C. Chan, Y. Liu, and L. Liu: Enhancement of plasticity and toughness in monolithic Zr-based bulk metallic glass by heterogeneous microstructure. Scr. Mater. 64, 609 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Y.F. Sun, C.H. Shek, B.C. Wei, W.H. Li, and Y.R. Wang: Effect of Nb content on the microstructure and mechanical properties of Zr-Cu-Ni-Al-Nb glass forming alloys. J. Alloys Compd. 403, 239 (2005).

    CAS  Article  Google Scholar 

  15. 15.

    J. Saida and A. Inoue: Effect of Mo addition on the formation of metastable fcc Zr2Ni and icosahedral phases in Zr-Al-Ni-Cu glassy alloy. Jpn. J. Appl. Phys. 40, L769 (2001).

    CAS  Article  Google Scholar 

  16. 16.

    J. Saida and A. Inoue: Icosahedral quasicrystalline phase formation in Zr-Al-Ni-Cu glassy alloys by addition of Nb, Ta and V elements. J. Phys. Condens. Matter 13, L73 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    C. Fan and A. Inoue: Formation of nanoscale icosahedral quasi-crystals and glass-forming ability in Zr-Nb-Ni-Cu-Al metallic glasses. Scr. Mater. 45, 115 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    C. Fan, C.F. Li, A. Inoue, and V. Haas: Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr-Ni-Cu-Al metallic glasses. Appl. Phys. Lett. 79, 1024 (2001).

    CAS  Article  Google Scholar 

  19. 19.

    P.A. Bancel and P.A. Heiney: Icosahedral alloys: Phase purity and phason strains. J. Phys. Collogues 47, C3–341 (1986).

    Google Scholar 

  20. 20.

    T.C. Lubensky, J.E.S. Socolar, P.J. Steinhardt, P.A. Bancel, and P.A. Heiney: Distortion and peak broadening in quasicrystal diffraction patterns. Phys. Rev. Lett. 57, 1440 (1986).

    CAS  Article  Google Scholar 

  21. 21.

    P.M. Horn, W. Malzfeldt, D.P. DiVincenzo, J. Toner, and R. Gambino: Systematics of disorder in quasiperiodic material. Phys. Rev. Lett. 57, 1444 (1986).

    CAS  Article  Google Scholar 

  22. 22.

    J.E.S. Socolar and D.C. Wright: Explanation of peak shapes observed in diffraction from icosahedral quasicrystals. Phys. Rev. Lett. 59, 221 (1987).

    CAS  Article  Google Scholar 

  23. 23.

    T.C. Lubensky, S. Ramaswamy, and J. Toner: Hydrodynamics of icosahedral quasicrystals. Phys. Rev. B 32, 7444 (1985).

    CAS  Article  Google Scholar 

  24. 24.

    D. Levine, T.C. Lubensky, S. Ostlund, S. Ramaswamy, PJ. Steinhardt, and J. Toner: Elasticity and dislocations in pentagonal and icosahedral quasicrystals. Phys. Rev. Lett. 54, 1520 (1985).

    CAS  Article  Google Scholar 

  25. 25.

    P.A. Heiney, P.A. Bancel, P.M. Horn, J.L. Jordan, S. Laplaca, J. Angilello, and F.W. Gayle: Disorder in Al-Li-Cu and Al-Mn-Si icosahedral alloys. Science 238, 660 (1987).

    CAS  Article  Google Scholar 

  26. 26.

    F.H. Li, G.Z. Pan, S.Z. Tao, M.J. Hui, Z.H. Mai, X.S. Chen, and L.Y. Cai: From quasicrystals to ordinary crystals. Philos. Mag. B 59, 535 (1989).

    CAS  Article  Google Scholar 

  27. 27.

    V. Franz, M. Feuerbacher, M. Wollgarten, and K. Urban: Electron diffraction analysis of plastically deformed icosahedral Al-Pd-Mn single quasicrystals. Philos. Mag. Lett. 79, 333 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Z.R. Huang, F.H. Li, C.M. Teng, G.Z. Pan, and X.S. Chen: Imperfection of and phase transformation in Al-Cu-Mg quasicrystals. J. Phys. Condens. Matter 3, 2231 (1991).

    CAS  Article  Google Scholar 

  29. 29.

    D.S. Zhao, Y.L. Tang, Z.P. Luo, R.H. Wang, N.F. Shen, and S.Q. Zhang: A Mg-Zn-Y-Zr icosahedral quasi-crystal containing linear phason strain. J. Phys. Condens. Matter 6, 7329 (1994).

    CAS  Article  Google Scholar 

  30. 30.

    H. Zhang and K.H. Kuo: Transformation of the two-dimensional decagonal quasicrystal to one-dimensional quasicrystals: A phason strain analysis. Phys. Rev. B 41, 3482 (1990).

    CAS  Article  Google Scholar 

  31. 31.

    X.Z. Liao, K.H. Kuo, H. Zhang, and K. Urban: A new orthorhombic phase in Al-Cu-Co representing a rational approximant to the decagonal quasicrystalline phase. Philos. Mag. B 66, 549 (1992).

    CAS  Article  Google Scholar 

  32. 32.

    X.Z. Li and K.H. Kuo: Transformation of Al-Ni-(Si) decagonal quasicrystals to 1-D quasicrystal and crystalline approximants. J. Mater. Res. 8, 2499 (1993).

    CAS  Article  Google Scholar 

  33. 33.

    H. Zhang, X.Z. Li, and K.H. Kuo: Continuous transformation of Al-Mn-Si and Al-Cr-Si decagonal quasicrystals to a new approximant, in Crystal-Quasicrystal Transitions, edited by M.J. Yacaman and T. Torres (Elsevier Science Publishers, Amsterdam, The Netherlands, 1993) p. 1.

    Google Scholar 

  34. 34.

    M. Tanaka, M. Terauchi, K. Hiraga, and M. Hirabayashi: Convergent-beam and small-area-parallel-beam electron diffraction of icosahedral quasicrystals of a melt-quenched Al-Mn alloy. Ultramicroscopy 17, 279 (1985).

    CAS  Article  Google Scholar 

  35. 35.

    J.W. Cahn, D. Shechtman, and D. Gratias: Indexing of icosahedral quasiperiodic crystals. J. Mater. Res. 1, 13 (1986).

    CAS  Article  Google Scholar 

  36. 36.

    V. Elser: Indexing problems in quasicrystal diffraction. Phys. Rev. B 32, 4892 (1985).

    CAS  Article  Google Scholar 

  37. 37.

    H. Takakura, C.P. Gomez, A. Yamamoto, M. De Boissieu, and A.P. Tsai: Atomic structure of the binary icosahedral Yb-Cd quasicrystal. Nat. Mater. 6, 58 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    F.H. Li, G.Z. Pan, D.X. Huang, H. Hashimoto, and Y. Yokota: Phason-strain identification for quasicrystals by high-resolution electron microscopy. Ultramicroscopy 45, 299 (1992).

    CAS  Article  Google Scholar 

  39. 39.

    X.D. Zou, K.K. Fung, and K.H. Kuo: Orientation relationship of decagonal quasicrystal and tenfold twins in rapidly cooled Al-Fe alloy. Phys. Rev. B 35, 4526 (1987).

    CAS  Article  Google Scholar 

  40. 40.

    P.A. Bancel: Dynamical phasons in a perfect quasicrystal. Phys. Rev. Lett. 63, 2741 (1989).

    CAS  Article  Google Scholar 

  41. 41.

    X.X. Yang, R.H. Wang, H. Takahashi, and S. Ohnuki: TEM study of crystalline microtwins and icosahedral quasicrystals coexisting in Al62Cu25.5Fe12.5 alloy. Phys. Stat. Sol. 152A, 341 (1995).

    Article  Google Scholar 

  42. 42.

    L.D. Landau and E.M. Lifshitz: Statistical Physics, 3rd ed. (Butterworth-Heinemann, Oxford, 1980).

    Google Scholar 

  43. 43.

    C.Z. Hu, R.H. Wang, D.H. Ding, and W.G. Yang: Structural transitions in octagonal, decagonal, and dodecagonal quasicrystals. Phys. Rev. B 53, 12031 (1996).

    CAS  Article  Google Scholar 

  44. 44.

    C.Z. Hu, R.H. Wang, and D.H. Ding: Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Rep. Prog. Phys. 63, 1 (2000).

    CAS  Article  Google Scholar 

  45. 45.

    Y. Ishii: Mode locking in quasicrystals. Phys. Rev. B 39, 11862 (1989).

    CAS  Article  Google Scholar 

  46. 46.

    Y. Ishii: Phason softening and structural transitions in icosahedral quasicrystals. Phys. Rev. B 45, 5228 (1992).

    CAS  Article  Google Scholar 

  47. 47.

    Z.H. Mai, L. Xu, N. Wang, K.H. Kuo, Z.C. Jin, and G. Cheng: Effect of phason strain on the transition of an octagonal quasicrystal to a β-Mn-type structure. Phys. Rev. B 40, 12183 (1989).

    CAS  Article  Google Scholar 

  48. 48.

    Z. Zhang and K.H. Kuo: Local translational order in the NiTi2 icosahedral quasicrystal. J. Microsc. 146, 313 (1987).

    CAS  Article  Google Scholar 

  49. 49.

    D.S. Zhou, D.X. Li, H.Q. Ye, and K.H. Kuo: Local translational order in the icosahedral quasicrystalline phase of V41Ni36Si23. Philos. Mag. Lett. 56, 209 (1987).

    CAS  Article  Google Scholar 

  50. 50.

    X.L. Wu, X.Z. Liao, S.G. Srinivasan, F. Zhou, E.J. Lavernia, R.Z. Valiev, and Y.T. Zhu: New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys. Rev. Lett. 100, 095701 (2008).

    CAS  Article  Google Scholar 

  51. 51.

    K. Otsuka and C.M. Wayman: Shape Memory Materials (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  52. 52.

    M. Wollgarten, M. Beyss, K. Urban, H. Liebertz, and U. Köster: Direct evidence for plastic deformation of quasicrystals by means of a dislocation mechanism. Phys. Rev. Lett. 71, 549 (1993).

    CAS  Article  Google Scholar 

  53. 53.

    R. Rosefeld, M. Feuerbacher, B. Baufeld, M. Bartsch, M. Wollgarten, G. Hanke, M. Beyss, U. Messerschmidt, and K. Urban: Study of plastically deformed icosahedral Al-Pd-Mn single quasicrystals by transmission electron microscopy. Philos. Mag. Lett. 72, 375 (1995).

    Article  Google Scholar 

  54. 54.

    L. Bresson and D. Gratias: Plastic deformation in AlCuFe icosahedral phase. J. Non-Cryst. Solids 153-154, 468 (1993).

    Article  Google Scholar 

  55. 55.

    J.B. Wang, J. Ma, L. Lu, D. Xiong, D.S. Zhao, and R.H. Wang: Plastic deformation of fine-grained Al-Cu-Fe-(B) icosahedral poly-quasicrystal at elevated temperature. Chin. Phys. Lett. 24, 2331 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

The research was supported by the National Natural Science Foundation of China (Grant Nos. 51071110, 40972044, 51271134, and J1210061), China MOE NCET Program (Grant No. NCET-07-0640), 973 Program (Grant No. 2011CB933300), and the Fundamental Research Funds for the Central Universities. The authors are grateful for constructive suggestions from E. Abe.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lu Lu.

Additional information

These authors contributed equally to this work.

Address all correspondence to this author.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, L., Xiong, D., Wang, J. et al. Varied linear phason strain and its induced domain structure in quasicrystalline precipitates of Zr-Al-Ni-Cu-Nb bulk metallic glass matrix composites. Journal of Materials Research 27, 3041–3048 (2012). https://doi.org/10.1557/jmr.2012.351

Download citation