Shear-induced crystallization and rheological behavior of syndiotactic polystyrene


We studied the correlation between shear-induced crystallization and rheological behavior of syndiotactic polystyrene. It was found that after applying a steady shear flow around the nominal melting temperature (Tm = 270 °C), crystal growth rate was accelerated compared with the quiescent state and a morphology of oriented lamellae (kebabs) was observed. On the other hand, no obvious morphological change was observed when applying a shear flow with relatively slow shear rate. We discussed a possibility that the difference of crystal growth rate and morphology could be attributed to the competition between shear rate and relaxation time such as reptation time. Our rheological results suggested that when the imposed shear rate is close to the reciprocal of reptation time, oriented lamellae (kebabs) are observed but extended-chain crystals (shishs) cannot be formed since the chain segments between adjacent entanglements remain unstretched.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.


  1. 1.

    J.A. Odell, D.T. Grubb, and A. Keller: A new route to high-modulus polyethylene by lamellar structures nucleated onto fibrous substrates with general implications for crystallization behaviour. Polymer 19 (6), 617 (1978).

    CAS  Article  Google Scholar 

  2. 2.

    Z. Bashir, J.A. Odell, and A. Keller: High modulus filaments of polyethylene with lamellar structure by melt processing; the role of the high molecular weight component. J. Mater. Sci. 19 (11), 3713 (1984).

    CAS  Article  Google Scholar 

  3. 3.

    Z. Bashir, J.A. Odell, and A. Keller: Stiff and strong polyethylene with shish kebab morphology by continuous melt extrusion. J. Mater. Sci. 21 (11), 3993 (1986).

    CAS  Article  Google Scholar 

  4. 4.

    A. Keller and J.A. Odell: The extensibility of macromolecules in solution: A new focus for macromolecular science. Colloid Polym. Sci. 263 (3), 181 (1985).

    CAS  Article  Google Scholar 

  5. 5.

    J.M. Schulz: Polymer Crystallization (Oxford University Press, New York, 2001).

    Google Scholar 

  6. 6.

    A.J. Pennings and A.M. Kiel: Fractionation of polymers by crystallization from solution, III. On the morphology of fibrillar polyethylene crystals grown in solution. Kolloid Z. Z. Polym. 205 (2), 160 (1965).

    CAS  Article  Google Scholar 

  7. 7.

    A.J. Pennings: Bundle-like nucleation and longitudinal growth of fibrillar polymer crystals from flowing solutions. J. Polym. Sci. Polym. Symp. 59 (1), 55 (1977).

    CAS  Article  Google Scholar 

  8. 8.

    F. Azzurri and G.C. Alfonso: Lifetime of shear-induced crystal nucleation precursors. Macromolecules 38 (5), 1723 (2005).

    CAS  Article  Google Scholar 

  9. 9.

    F. Azzurri and G.C. Alfonso: Insights into formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene. Macromolecules 41 (4), 1377 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    Y. Hayashi, G. Matsuba, Y. Zhao, K. Nishida, and T. Kanaya: Precursor of shish-kebab in isotactic polystyrene under shear flow. Polymer 50 (9), 2095 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    Y. Zhao, G. Matsuba, K. Nishida, T. Fujiwara, R. Inoue, I. Polec, C. Deng, and T. Kanaya: Relaxation of shish-kebab precursor in isotactic polystyrene after short-term shear flow. J. Polym. Sci., Part B: Polym. Phys. 49 (3), 214 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    L. Balzano, N. Kukalyekar, S. Rastogi, G.W.M. Peters, and J.C. Chadwick: Crystallization and dissolution of flow-induced precursors. Phys. Rev. Lett. 100 (4), 048302 (2008).

    Article  Google Scholar 

  13. 13.

    L. Balzano, N. Kukalyekar, and S. Rastogi: Crystallization and precursors during fast short-term shear. Macromolecules 42 (6), 2088 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    J. Van Meerveld, G. Peters, and M. Hutter: Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheol. Acta 44 (2), 119 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    F. Custodio, R. Steenbakkers, P. Anderson, G. Peters, and H. Meijer: Model development and validation of crystallization behavior in injection molding prototype flows. Macromol. Theory Simul. 18 (9), 469 (2009).

    CAS  Article  Google Scholar 

  16. 16.

    N. Patil, L. Balzano, G. Portale, and S. Rastogi: Influence of nanoparticles on the rheological behaviour and initial stages of crystal growth in linear polyethylene. Macromol. Chem. Phys. 210 (24), 2174 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Y. Amemiya, K. Wakabayashi, T. Hamanaka, T. Wakabayashi, and H. Hashizume: Design of small-angle X-ray diffractometer using synchrotron radiation at the photon factory. Nucl. Instrum. Methods 208 (1–3), 471 (1983).

    Article  Google Scholar 

  18. 18.

    C. Wang, Y.W. Cheng, Y.C. Hsu, and T.L. Lin: Lamellar morphology and equilibrium melting temperature of syndiotactic polystyrene in β-crystalline form. J. Polym. Sci., Part B: Polym. Phys. 40 (15), 1626 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    R.H. Lin and E.M. Woo: Melting behavior and identification of polymorphic crystals in syndiotactic polystyrene. Polymer 41 (1), 121 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    R.H. Somani, L. Yang, L. Zhu, and B.S. Hsiao: Flow-induced shish-kebab precursor structures in entangled polymer melts. Polymer 46 (20), 8587 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    G. Strobl: The Physics of Polymers: Concepts for Understanding their Structures and Behavior, 2nd ed. (Springer Press, 1997).

    Google Scholar 

  22. 22.

    D. Cavallo, F. Azzurri, L. Balzano, S.S. Funari, and G.C. Alfonso: Flow memory and stability of shear-induced nucleation precursors in isotactic polypropylene. Macromolecules 43 (22), 9394 (2010).

    CAS  Article  Google Scholar 

  23. 23.

    A. Sorrentino, R. Pantani, and G. Titomanlio: Kinetics of melting and characterization of the thermodynamic and kinetic properties of syndiotactic polystyrene. J. Polym. Sci., Part B: Polym. Phys. 45 (2), 196 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    C. De Rosa, O.R. de Ballesteros, M. Di Gennaro, and F. Auriemma: Crystallization from the melt of α and β forms of syndiotactic polystyrene. Polymer 44 (6), 1861 (2003).

    Article  Google Scholar 

  25. 25.

    A. Sorrentino, R. Pantani, and G. Titomanlio: Two-phase crystallization kinetics of syndiotactic polystyrene. J. Polym. Sci., Part B; Polym. Phys. 48 (15), 1757 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    E.M. Woo, Y.S. Sun, and C.P. Yang: Polymorphism, thermal behavior, and crystal stability in syndiotactic polystyrene vs. its miscible blends. Prog. Polym. Sci. 26 (6), 945 (2001).

    CAS  Article  Google Scholar 

  27. 27.

    E.B. Gowd, K. Tashiro, and C. Ramesh: Structural phase transitions of syndiotactic polystyrene. Prog. Polym. Sci. 34 (3), 280 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    J.K. Keum, F. Zuo, and B.S. Hsiao: Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules 41 (13), 4766 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    L.B. Li and W.H. de Jeu: Shear-induced crystallization of poly(butylene terephthalate): A real-time small-angle x-ray scattering study. Macromolecules 37 (15), 5646 (2004).

    CAS  Article  Google Scholar 

  30. 30.

    S. Ran, D. Fang, X. Zong, B. Hsiao, B. Chu, and P. Cunniff: Structural changes during deformation of Kevlar fibers via on-line synchrotron SAXS/WAXD techniques. Polymer 42 (4), 1601 (2001).

    CAS  Article  Google Scholar 

  31. 31.

    J.W. Housmans, R.J.A. Steenbakkers, P.C. Roozemond, G.W.M. Peters, and H.E.H. Meijer: Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene. Macromolecules 42 (15), 5728 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    I. Dukovski and M. Muthukumar: Langevin dynamics simulations of early stage shish-kebab crystallization of polymers in extensional flow. J. Chem. Phys. 118 (14), 6648 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    P.G. de Gennes: Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55 (2), 572 (1971).

    Article  Google Scholar 

  34. 34.

    P.G. de Gennes: Coherent scattering by one reptating chain. J. Phys. 42 (5), 735 (1981).

    Article  Google Scholar 

  35. 35.

    M. Doi and S. Edwards: The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).

    Google Scholar 

  36. 36.

    M. Doi: Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model. J. Polym. Sci., Polym. Phys. Ed. 21 (5), 667 (1983).

    CAS  Article  Google Scholar 

  37. 37.

    G. Marrucci: Dynamics of entanglements: A nonlinear model consistent with the Cox-Merz rule. J. Non-Newtonian Fluid Mech. 62 (2–3), 279 (1996).

    CAS  Article  Google Scholar 

  38. 38.

    H. Zuidema, G. Peters, and H. Meijer: Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers. Macromol. Theory Simul. 10 (5), 447 (2001).

    CAS  Article  Google Scholar 

  39. 39.

    Q. Huang, L. Chen, S. Lin, Q. Wu, F. Zhu, Z. Shiyan, Fu, and W. Yang: Syndiospecific polymerization of styrene catalyzed by half-titanocene catalysts. Polymer 47 (2), 767 (2006).

    CAS  Article  Google Scholar 

  40. 40.

    S. Acierno, B. Palomba, H.H. Winter, and N. Grizzuti: Effect of molecular weight on the flow-induced crystallization of isotactic poly(1-butene). Rheol. Acta 43 (3), 243 (2003).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Go Matsuba.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, Y., Matsuba, G. & Ito, H. Shear-induced crystallization and rheological behavior of syndiotactic polystyrene. Journal of Materials Research 27, 1372–1378 (2012).

Download citation