High-throughput experimentation in resistive gas sensor materials development

Abstract

The review describes the workflow of a high-throughput screening process for the rapid identification of new and improved gas sensor materials. Multiple nanoparticulate metal oxides were synthesized via the polyol method, and material diversity was achieved by volume and/or surface doping. The resulting materials were applied as thick films on multielectrode substrates to serve as chemiresistors. This high-throughput approach including automated preparation, complex impedance measurements, and evaluation procedures enables reproducible measurements and their visual representation. Selected examples demonstrate the state of the art for applying high-throughput impedance spectroscopy in search of new sensitive and selective gas sensing materials as well as in analyzing structure–property relations.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE I.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.
FIG. 16.
FIG. 17.

References

  1. 1.

    W.H. Brattain and J. Bardeen: Surface properties of germanium. Bell. Syst. Technol. J. 32, 1 (1953).

    Article  Google Scholar 

  2. 2.

    G. Heiland: About the influence of adsorbed oxygen on the electrical conductivity of zinc oxide crystals (Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen). Z. Phys. 138(3–4), 459 (1954) [in German ].

    CAS  Article  Google Scholar 

  3. 3.

    G. Heiland: About the influence of hydrogen on the electrical conductivity at the surface of zinc oxide crystals (Zum Einfluß von Wasserstoff auf die elektrische Leitfähigkeit an der Oberfläche von Zinkoxydkristallen). Z. Phys. 148(1), 15 (1957) [in German ].

    CAS  Article  Google Scholar 

  4. 4.

    T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatami: A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34(11), 1502 (1962).

    CAS  Article  Google Scholar 

  5. 5.

    T. Seiyama and S. Kagawa: Detector for gaseous components with semiconductive thin films. Anal. Chem. 38, 1069 (1966).

    CAS  Article  Google Scholar 

  6. 6.

    N. Taguchi: Japan Patent No. 45-38200 1962; Japan Patent No. 47-38840 1963; U.S. Patent No. 3644795 1970.

  7. 7.

    G. Eranna, B.C. Joshi, D.P. Runthala, and R.P. Gupta: Oxide materials for development of integrated gas sensors–A comprehensive review. Crit. Rev. Solid State Mater. Sci. 29, 111 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji: Recent developments in solid oxide fuel cell materials. Fuel Cells 1(2), 117 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    N. Xinshu, L. Honghua, and L. Guogang: Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd). J. Mol. Catal. A: Chem 232(1–2), 89 (2005).

    Google Scholar 

  10. 10.

    M.A. Peña and J.L.G. Fierro: Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981 (2001).

    Article  CAS  Google Scholar 

  11. 11.

    N. Keller, J. Mistrik, S. Visnovsky, D.S. Schmool, Y. Dumont, P. Renaudin, M. Guyot, and R. Krishnan: Magneto-optical Faraday and Kerr effect of orthoferrite thin films at high temperatures. Eur. Phys. J. B 21(1), 67 (2001).

    CAS  Article  Google Scholar 

  12. 12.

    G. Martinelli, M.C. Carotta, M. Ferroni, Y. Sadaoka, and E. Traversa: Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sens. Actuators, B 55, 99 (1999).

    CAS  Article  Google Scholar 

  13. 13.

    X. Niu, W. Du, and W. Du: Preparation, characterization and gas-sensing properties of rare earth mixed oxides. Sens. Actuators, B 99, 399 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    T. Arakawa, S. Tsuchi-ya, and J. Shiokawa: Catalytic activity of rare-earth orthoferrites and orthochromites. Mater. Res. Bull. 16, 97 (1981).

    CAS  Article  Google Scholar 

  15. 15.

    H. Aono, E. Traversa, M. Sakamoto, and Y. Sadaoka: Crystallographic crystallization and NO2 gas sensing property of LnFeO3 prepared by thermal decomposition of Ln-Fe hexacyanocomplexes, Ln[Fe(CN)6]*nH2O, Ln = La, Nd, Sm, Gd, and Dy. Sens. Actuators, B 94, 132 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    X. Liu, J. Hu, B. Cheng, H. Qin, M. Zhao, and C. Yang: First-principles study of O2 adsorption on the LaFeO3 (010) surface. Sens. Actuators, B 139, 520 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    X. Liu, J. Hu, B. Cheng, H. Qin, and M. Jiang: Preparation and gas sensing characteristics of p-type semiconducting LnFe0.9Mg0.1O3 (Ln = Nd, Sm, Gd and Dy) materials. Curr. Appl Phys. 9, 613 (2009).

    Article  Google Scholar 

  18. 18.

    Toyama Prefecture: Jpn. Kokai Tokkyo Koho. JP 59067601. Pdf-file number “JPA 1984067601” (1984).

    Google Scholar 

  19. 19.

    X. Chu, X. Liu, G. Wang, and G. Meng: Preparation and gas sensing properties of nano-CoTiO3. Mater. Res. Bull. 34(10/11), 1789 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    A.R. Potyrailo and V.M. Mirsky: Combinatorial and high-throughput development of sensing materials: The first 10 years. Chem. Rev. 108, 770 (2008).

    CAS  Article  Google Scholar 

  21. 21.

    C-D. Kohl: Electronic noses. In Nanoelectronics and Information Technology, R. Waser, ed.; (Wiley-VCH, Berlin, Germany, 2005).

    Google Scholar 

  22. 22.

    N. Bârsan: Conduction models in gas-sensing SnO2 layers: Grain-size effects and ambient atmosphere influence. Sens. Actuators, B 17(3), 241 (1994).

    Article  Google Scholar 

  23. 23.

    N. Bârsan, M. Schweizer-Berberich, and W. Göpel: Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: A status report. Fresenius J. Anal. Chem. 365(4), 287 (1999).

    Article  Google Scholar 

  24. 24.

    M.I. Baraton and L. Merhari: Advances in air quality monitoring via nanotechnology. J. Nanopart. Res. 6(1), 107 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    G. Korotcenkov: Practical aspects in design of one-electrode semiconductor gas sensors: Status report. Sens. Actuators, B 121(2), 664 (2007).

    CAS  Article  Google Scholar 

  26. 26.

    N. Yamazoe, G. Sakai, and K. Shimanoe: Oxide semiconductor gas sensor. Catal. Surv. Asia 7, 63 (2003).

    CAS  Article  Google Scholar 

  27. 27.

    N. Yamazoe: New approaches for improving semiconductor gas sensors. Sens. Actuators, B 5(1–4), 7 (1991).

    CAS  Article  Google Scholar 

  28. 28.

    S. Samson and C.G. Fonstad: Defect structure and electronic donor levels in stanic oxide crystals. J. Appl. Phys. 44(10), 4618 (1973).

    CAS  Article  Google Scholar 

  29. 29.

    Z.M. Jarzebski and J.M. Marton: Physical properties of SnO2 materials. J. Electrochem. Soc. 123, 299C (1976).

    CAS  Article  Google Scholar 

  30. 30.

    J. Maier and W. Göpel: Investigations of the bulk defect chemistry of polycrystalline tin(IV) oxide. J. Solid State Chem. 72(2), 293 (1988).

    CAS  Article  Google Scholar 

  31. 31.

    W. Göpel and K.D. Schierbaum: Chemisorption and charge transfer at ionic semiconductor surfaces: Imaging in designing gas sensors. Sens. Actuators, B 26–27, 1 (1995).

    Article  Google Scholar 

  32. 32.

    P.B. Weisz: Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis. J. Chem. Phys. 21, 1531 (1953).

    CAS  Article  Google Scholar 

  33. 33.

    U. Lampe, M. Fleischer, N. Reitmeier, H. Meixner, J.B. McMonagle, and A. Marsch: New metal oxide sensors: Materials and properties. In Sensors; W. Göpel, J. Hesse, and J.N. Zemel, eds.; (Wiley-VCH, Weinheim, Germany, 2, 1997); p. 29.

    Google Scholar 

  34. 34.

    M.I. Barton, L. Merhari, H. Ferkerl, and J.F. Catagnet: Comparison of the gas sensing properties of tin, indium and tungsten oxides nanopowders: Carbon monoxide and oxygen detection. Mater. Sci. Eng., C 19, 315 (2002).

    Article  Google Scholar 

  35. 35.

    J. Madou and S.R. Morrison: Chemical Sensing with Solid State Devices (Academic Press, New York, 1989).

    Google Scholar 

  36. 36.

    S. Lenaerts, M. Honore, G. Huyberechts, J. Roggen, and G. Maes: In situ infrared and electrical characterization of tin dioxide gas sensors in nitrogen/oxygen mixtures at temperatures up to 720 K. Sens. Actuators, B 19, 478 (1994).

    CAS  Article  Google Scholar 

  37. 37.

    H. Ogawa, M. Nishikawa, and A. Abe: Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys. 53, 4448 (1982).

    CAS  Article  Google Scholar 

  38. 38.

    N. Bârsan and U. Weimar: Understanding the fundamental principles of metal oxide based gas sensors: The example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 15(20), R813 (2003).

    Article  Google Scholar 

  39. 39.

    T.G. Nemov and S.P. Yordanov: Ceramic Sensors–Technology and Application (Technomic Publishing Company Inc., Lancaster, PA, 1996), p. 138.

    Google Scholar 

  40. 40.

    M. Pardo and G. Sberveglieri: Electronic olfactory systems based on metal oxide semiconductor arrays. MRS Bull. 29(19), 703 (2004).

    CAS  Article  Google Scholar 

  41. 41.

    M.E. Franke, T.J. Koplin, and U. Simon: Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2(1), 36 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    G. Korotcenkov: Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng., B 139(1), 1 (2007).

    CAS  Article  Google Scholar 

  43. 43.

    N. Bârsan, D. Koziej, and U. Weimar: Metal oxide-based gas sensor research: How to? Sens. Actuators, B 121(1), 18 (2007).

    Article  CAS  Google Scholar 

  44. 44.

    K.D. Benkstein and S. Semancik: Mesoporous nanoparticles TiO2 thin films for conductometric gas sensing on microhotplate platforms. Sens. Actuators, B 113, 445 (2006).

    CAS  Article  Google Scholar 

  45. 45.

    C. Xu, J. Tamaki, N. Miura, and N. Yamazoe: Correlation between gas sensitivity and crystallite size in porous SnO2-based sensors. Chem. Lett. 19(3), 441 (1990).

    Article  Google Scholar 

  46. 46.

    C. Xu, J. Tamaki, N. Miura, and N. Yamazoe: Relationship between gas sensitivity and microstructure of porous stannic oxide. J. Electrochem. Soc. Jpn. 58(12), 1143 (1990).

    CAS  Google Scholar 

  47. 47.

    A. Rothschild and Y. Komem: The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 95, 6374 (2004).

    CAS  Article  Google Scholar 

  48. 48.

    Y. Shimizu, A. Jono, T. Hyodo, and M. Egashira: Preparation of large mesoporous SnO2 powder for gas sensor application. Sens. Actuators, B 108, 56 (2005).

    CAS  Article  Google Scholar 

  49. 49.

    G. Korotcenkov: The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng., R. 61, 1 (2008).

    Article  CAS  Google Scholar 

  50. 50.

    L. Schmidt-Mende, and J.L. MacManus-Driscoll: ZnO–nanostructures, defects, and devices. Mater. Today 10(5), 40 (2007).

    CAS  Article  Google Scholar 

  51. 51.

    A. Gurlo: Nanosensors: Does crystal shape matter? Small 6(11), 2077 (2010).

    CAS  Article  Google Scholar 

  52. 52.

    A. Seyed-Razavi, I.K. Snook, and A.S. Barnard: Origin of nanomorphology: Does a complete theory of nanoparticle evolution exist? J. Mater. Chem. 20, 416 (2010).

    CAS  Article  Google Scholar 

  53. 53.

    G. Korotcenkov: Gas response control through structural and chemical modification of metal oxide films: State of the art and approaches. Sens. Actuators, B 107, 209 (2005).

    CAS  Article  Google Scholar 

  54. 54.

    J. Kappler, N. Bârsan, U. Weimar, A. Diéguez, J.L. Alay, A. Romano-Rodriguez, J.R. Morante, and W. Göpel: Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors. Fresenius J. Anal. Chem. 361(2), 110 (1998).

    CAS  Article  Google Scholar 

  55. 55.

    A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Bârsan, and W. Göpel: Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol-gel nanocrystals for gas sensors. Sens. Actuators, B 70(1–3), 87 (2000).

    CAS  Article  Google Scholar 

  56. 56.

    S.R. Morrison: Selectivity in semiconductor gas sensors. Sens. Actuators 12, 425 (1987).

    CAS  Article  Google Scholar 

  57. 57.

    D. Kohl: The role of noble metals in the chemistry of solid-state gas sensors. Sens. Actuators, B 1, 158 (1990).

    CAS  Article  Google Scholar 

  58. 58.

    N. Tsud, V. Johanek, I. Stara, K. Veltruska, and V. Matolin: XPS, ISS, and TPD study of Pd-Sn interactions on Pd-SnOX systems. Thin Solid Films 391, 204 (2001).

    CAS  Article  Google Scholar 

  59. 59.

    V. Nehasil, P. Janecek, G. Korotcenkov, and V. Matolin: Investigation of behavior of Rh deposited onto polycrystalline SnO2 by means of TPD, AES and EELS. Surf. Sci. 532–535, 415 (2003).

    Article  CAS  Google Scholar 

  60. 60.

    A.M. Ruiz, A. Cornet, K. Shimanoe, J.R. Morante, and N. Yamazoe: Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sens. Actuators, B 108(1–2), 34 (2005).

    CAS  Article  Google Scholar 

  61. 61.

    C. Mohr, H. Hofmeister, J. Radnik, and P. Claus: Identification of active sites in gold-catalyzed hydrogenation of acrolein. J. Am. Chem. Soc. 125, 1905 (2003).

    CAS  Article  Google Scholar 

  62. 62.

    Y.Y. Fong, A.Z. Abdullah, A.L. Ahmad, and S. Bhatia: Zeolite membrane based selective gas sensors for monitoring and control of gas emissions. Sens. Lett. 5(3–4), 485 (2007).

    CAS  Article  Google Scholar 

  63. 63.

    K. Sahner, R. Moos, M. Matam, J.J. Tunney, and M. Post: Hydrocarbon sensing with thick and thin film p-type conducting perovskite materials. Sens. Actuators, B 108, 102 (2005).

    CAS  Article  Google Scholar 

  64. 64.

    T. Sahm, R. Weizhi, N. Bârsan, L. Mädler, and U. Weimar: Sensing of CH4, CO and ethanol with in situ nanoparticle aerosol-fabricated multilayer sensors. Sens. Actuators, B 127(1), 63 (2007).

    CAS  Article  Google Scholar 

  65. 65.

    J. Trimboli, M. Mottern, H. Verweij, and P.D. Dutta: Interaction of water with titania: Implications for high-temperature gas sensing. J. Phys. Chem. 110(11), 5647 (2006).

    CAS  Article  Google Scholar 

  66. 66.

    A. Cabot, J. Arbiol, A. Cornet, J.R. Morante, F. Chen, and M. Liu: Mesoporous catalytic filters for semiconductor gas sensors. Thin Solid Films 436(1), 64 (2003).

    CAS  Article  Google Scholar 

  67. 67.

    C. Pijolat, J.P. Viricelle, G. Tournier, and P. Montmeat: Application of membranes and filtering films for gas sensors improvements. Thin Solid Films 490(1), 7 (2005).

    CAS  Article  Google Scholar 

  68. 68.

    J.J. Hanak: The “multiple-sample concept” in materials research: Synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci. 5, 964 (1970).

    CAS  Article  Google Scholar 

  69. 69.

    J.J. Hanak: A quantum leap in the development of new materials and devices. Appl. Surf. Sci. 223(1–3), 1 (2004).

    CAS  Article  Google Scholar 

  70. 70.

    X-D. Xiang and P.G. Schultz: The combinatorial synthesis and evaluation of functional materials. Physica C 282–287, 428 (1997).

    Article  Google Scholar 

  71. 71.

    R.B. van Dover, R.F. Schneemeyer, and R.M. Fleming: Discovery of a useful thin-film dielectric using a composition-spread approach. Nature 392, 162 (1998).

    Article  Google Scholar 

  72. 72.

    G. Briceño, H. Shang, X. Sun, P.G. Schultz, and X-D. Xiang: A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis. Science 270, 273 (1995).

    Article  Google Scholar 

  73. 73.

    S.H. Baeck, T.F. Jaramillo, C. Brändi, and E.W. McFarland: Combinatorial electrochemical synthesis and characterization of tungsten-based mixed metal oxides. J. Comb. Chem. 4, 563 (2002).

    CAS  Article  Google Scholar 

  74. 74.

    H.M. Reichenbach and P.J. McGinn: Combinatorial synthesis of oxide powders. J. Mater. Res. 16(4), 967 (2001).

    CAS  Article  Google Scholar 

  75. 75.

    A. Hagemeyer, P. Strasser, and A.F. Volpe Jr., eds.: High-throughput Screening in Chemical Catalysis: Technologies, Strategies and Applications (Wiley-VCH, Weinheim, Germany, 2004).

    Google Scholar 

  76. 76.

    M.A. Aramova, K.S. Chang, I. Tageuchi, H. Jabs, D. Westerheim, A. Gonzalez-Martin, J. Kim, and B. Lewis: Combinatorial libraries of semiconductor gas sensor as inorganic electronic noses. Appl. Phys. Lett. 83(6), 1255 (2003).

    Article  CAS  Google Scholar 

  77. 77.

    R. Dagani: A faster route to new materials. Chem. Eng. News 77(10), 51 (1999).

    Article  Google Scholar 

  78. 78.

    W.F. Maier, K. Stöwe, and S. Sieg: Combinatorial and high-throughput materials science. Angew. Chem. Int. Ed. 46(32), 6016 (2007).

    CAS  Article  Google Scholar 

  79. 79.

    U. Simon, D. Sanders, J. Jockel, C. Heppel, and T. Brinz: Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials. J. Comb. Chem. 4, 511 (2002).

    CAS  Article  Google Scholar 

  80. 80.

    A. Franzen, D. Sanders, J. Jockel, J. Scheidtmann, G. Frenzer, W.F. Maier, T. Brinz, and U. Simon: High-throughput method for the impedance spectroscopic characterization of resistive gas sensors. Angew. Chem. Int. Ed. 43(6), 752 (2004).

    Article  CAS  Google Scholar 

  81. 81.

    U. Simon, D. Sanders, J. Jockel, and T. Brinz: Setup for high-throughput impedance screening of gas-sensing materials. J. Comb. Chem. 7(5), 682 (2005).

    CAS  Article  Google Scholar 

  82. 82.

    M. Figlarz, F. Fiévet, and J.P. Lagier: Process for reducing metallic compounds using polyols, and metallic powders produced thereby. Europe Patent No. 0113281, 1982.

  83. 83.

    P. Toneguzzo, G. Viau, O. Acher, F. Guillet, E. Bruneton, F. Fievet-Vincent, and F. Fievet: CoNi and FeCoNi fine particles prepared by the polyol process: Physico-chemical characterization and dynamic magnetic properties. J. Mater. Sci. 35, 3767 (2000).

    CAS  Article  Google Scholar 

  84. 84.

    L. Poul, S. Ammar, N. Jouini, F. Fievet, and F. Villain: Synthesis of inorganic compounds (metal, oxide and hydroxide) in medium: A versatile route related to the sol-gel process. J. Sol-Gel Sci. Technol. 26, 261 (2003).

    CAS  Article  Google Scholar 

  85. 85.

    D. Jézéquel, J. Guenot, N. Jouini, and F. Fiévet: Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics. J. Mater. Res. 10, 77 (1995).

    Article  Google Scholar 

  86. 86.

    C. Feldmann and H. Jungk: Polyol-mediated preparation of nanoscale oxide particles. Angew. Chem. Int. Ed. 40(2), 359 (2001).

    CAS  Article  Google Scholar 

  87. 87.

    M. Siemons, T. Weirich, J. Mayer, and U. Simon: Preparation of nanosized perovskite-type oxides via polyol method. Z. Anorg. Allg. Chem. 630, 2083 (2004).

    CAS  Article  Google Scholar 

  88. 88.

    M. Siemons, A. Leifert, and U. Simon: Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 materials. Adv. Funct. Mater. 17, 2189 (2007).

    CAS  Article  Google Scholar 

  89. 89.

    M. Siemons and U. Simon: Polyol-mediated synthesis of LnCrO3 (Ln = La, Pr, Sm-Lu). Z. Anorg. Allg. Chem. 632(12–13), 2159 (2006).

    Article  Google Scholar 

  90. 90.

    Unpublished results.

  91. 91.

    T.J. Koplin: Development and application of high-throughput techniques to the synthesis and research into new nanostructured sensor materials (Entwicklung und Anwendung von Hochdurchsatztechniken zur Darstellung und Untersuchung neuer nanostrukturierter Sensormaterialien). Ph.D. Thesis, RWTH Aachen University, 2006 [in German ].

    Google Scholar 

  92. 92.

    D. Sanders: Development of gas sensors based on indium oxide using high-throughput impedance spectroscopy (Entwicklung von Gassensoren auf Indiumoxid-Basis mittels Hochdurchsatz-Impedanzspektroskopie). Ph.D. Thesis, RWTH Aachen University, 2004 [in German ].

    Google Scholar 

  93. 93.

    D. Sanders and U. Simon: High-throughput gas sensing screening of surface doped In2O3. J. Comb. Chem. 9, 53 (2007).

    CAS  Article  Google Scholar 

  94. 94.

    M. Siemons: High throughput methods for synthesis and impedance characterization of ABO3 gas sensing materials. Ph.D. Thesis, RWTH Aachen University, 2006.

  95. 95.

    M. Siemons and U. Simon: Preparation and gas sensing properties of nanocrystalline La-doped CoTiO3. Sens. Actuators, B 120(1), 110 (2006).

    CAS  Article  Google Scholar 

  96. 96.

    M. Siemons, T.J. Koplin, and U. Simon: Advances in high throughput screening of gas sensing materials. Appl. Surf. Sci. 254(3), 669 (2007).

    CAS  Article  Google Scholar 

  97. 97.

    M. Siemons and U. Simon: High throughput screening of the sensing properties of doped SmFeO3. Solid State Phenom. 128, 225 (2006).

    Article  Google Scholar 

  98. 98.

    S.H. Bergh and S. Guan: Fluid distribution for chemical processing microsystems. U.S. Patent No. 6890493, 2000.

  99. 99.

    A. Frantzen, D. Sanders, J. Scheidtmann, U. Simon, and W.F. Maier: A flexible database for combinatorial and high-throughput materials science. QSAR Comb. Sci. 24(1), 22 (2005).

    CAS  Article  Google Scholar 

  100. 100.

    C.J. Belle, A. Bonamin, U. Simon, J. Santoyo-Salazar, M. Pauly, S. Bégin-Colin, and G. Pourroy: Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sens. Actuators, B 160(1), 942 (2011).

    CAS  Article  Google Scholar 

  101. 101.

    D. Sanders, M. Siemons, T.J. Koplin, and U. Simon: Development of a high-throughput impedance spectroscopy screening system (HT-IS) for characterization of novel nanoscaled gas sensing materials, in Nanoporous and Nanostructured Materials for Catalysis, Sensor and Gas Separation Applications, edited by S-W. Lu, H. Hahn, J. Weissmuller, and J.L. Gole (Mater. Res. Soc. Symp. Proc. 876E, Warrendale, PA, 2005); p. R6.1.1.

    Google Scholar 

  102. 102.

    T.J. Koplin, M. Siemons, C. Océn-Valéntine, D. Sanders, and U. Simon: Workflow for high-throughput screening of gas sensing materials. Sensors 6, 298 (2006).

    CAS  Article  Google Scholar 

  103. 103.

    M. Siemons and U. Simon: High throughput screening of the propylene and ethanol sensing properties of rare-earth orthoferrites and orthochromites. Sens. Actuators, B 126(1), 181 (2007).

    CAS  Article  Google Scholar 

  104. 104.

    L. Heinert: Systematic structure-activity investigations between semiconducting metal oxide sensors and hydrocarbons (Systematische Struktur-Wirkungs-Untersuchungen zwischen halbleitenden Metalloxidsensoren und Kohlenwasserstoffen). Ph.D. Thesis, Justus-Liebig-Universität Giessen, 2000 [in German ].

    Google Scholar 

  105. 105.

    P. Song, H. Qin, L. Zhang, X. Liu, S. Huang, J. Hu, and M. Jiang: Electrical and CO gas-sensing properties of perovskite-type La0.8Pb0.2Fe0.8Co0.2O3 semiconductive material. Physica B 368(1–4), 204–208 (2005).

    CAS  Article  Google Scholar 

  106. 106.

    H-J. Lee, J-H. Song, Y-S. Yoon, T-S. Kim, K-J. Kim, and W-K. Choi: Enhancement of CO sensitivity of indium oxide-based semiconductor gas sensor through ultra-thin cobalt adsorption. Sens. Actuators, B 79, 200 (2001).

    CAS  Article  Google Scholar 

  107. 107.

    T. Arakawa, H. Kurachi, and J. Shiokawa: Physicochemical properties of rare earth perovskite oxides used as gas sensor material. J. Mater. Sci. 20, 1207 (1985).

    CAS  Article  Google Scholar 

  108. 108.

    T.H. Muster, A. Trinichi, T.A. Markley, D. Lau, P. Martin, A. Bradbury, A. Bendavid, and S. Dligatch: A review of high throughput and combinatorial electrochemistry. Electrochim. Acta 56, 9679 (2011).

    CAS  Article  Google Scholar 

  109. 109.

    S.O. Klemm, A.A. Topalov, C.A. Laska, and K.J.J. Mayrhofer: Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS. Electrochem. Commun. 13(12), 1533 (2011).

    CAS  Article  Google Scholar 

  110. 110.

    S.O. Klemm, J-C. Schauer, B. Schumacher, and A.W. Hassel: High throughput electrochemical screening and dissolution monitoring of Mg-Zn material libraries. Electrochim. Acta 56, 9627 (2011).

    CAS  Article  Google Scholar 

  111. 111.

    S.O. Klemm, S.E. Pust, A.W. Hassel, J. Hüpkes, and K.J.J. Mayrhofer: Electrochemical texturing of Al-doped ZnO thin films for photovoltaic application. J. Solid State Electrochem. 1, 283 (2012).

    Article  CAS  Google Scholar 

  112. 112.

    S. Klemm, N. Fink, and K. Mayrhofer: High-throughput in search of new catalysts (Mit Hochdurchsatz auf der Suche nach neuen Katalysatoren). Nachr. Chem. 60, 535 (2012) [in German ].

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ulrich Simon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Belle, C.J., Simon, U. High-throughput experimentation in resistive gas sensor materials development. Journal of Materials Research 28, 574–588 (2013). https://doi.org/10.1557/jmr.2012.344

Download citation