Li+ for Na+ ion-exchange-induced phase separation in borosilicate glass

Abstract

Li+ for Na+ ion-exchange-induced phase separation in borosilicate glass was investigated. A glass with a composition, 70SiO2·15B2O3·15Na2O, was prepared. The glass was transparent, and macroscopically no phase separation was observed because the immiscibility temperature for the composition was lower than the glass transition temperature. Substitution of Li+ for Na+ at the surface domain of the glass induced phase separation in the domain and subsequent heat treatment evolved interconnected silica-rich and alkali borate-rich phases through the phase separation. However, the parts in which ion exchange did not occur kept homogeneous and transparent. This phenomenon is explainable by the fact that the immiscibility temperature for the Li+-substituted composition of the original glass elevated up to a temperature higher than the ion exchange and heat treatment temperatures. The borate-rich phases leached by acid treatment for the phase-separated glass. Through these processes, we obtained monolithic glasses consisting of porous domains, and homogeneous and transparent parts.

This is a preview of subscription content, access via your institution.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

References

  1. 1.

    O.V. Mazurin, G.P. Roskova, and E.A. Porai-Koshits: Immiscibility diagrams of oxide glass-forming systems, in Phase Separation in Glass, edited by O.V. Mazurin and E.A. Porai-Koshits (North-Holland Physics Publishing, New York, 1984), pp. 104–142.

    Google Scholar 

  2. 2.

    W. Haller, D.H. Blackburn, F.E. Wagstaff, and R.J. Charles: Metastable immiscibility surface in the system Na2O-B2O3-SiO2. J. Am. Ceram. Soc. 53, 34 (1970).

    CAS  Article  Google Scholar 

  3. 3.

    E.M. Levin and H.F. McMurdie: Phase diagrams for ceramists 1975 supplement (Amer. Ceram. Soc., Inc., Columbus, Ohio, 1975), pp. 198, 209.

    Google Scholar 

  4. 4.

    G.O. Karapetyan, V.V. Loboda, and D.K. Tagantsev: A method of formation of the surface phase-separated layers of a controlled thickness. Glass Phys. Chem. 25, 288 (1999).

    CAS  Google Scholar 

  5. 5.

    G.O. Karapetyan, V.V. Loboda, and D.K. Tagantsev: Influence of ion exchange on liquid-liquid phase separation in alkali borosilicate glasses: Effect of ion-exchange-induced metastable glass homogenization. J. Non-Cryst. Solids 270, 154 (2000).

    CAS  Article  Google Scholar 

  6. 6.

    K. Kadono, Y. Hattori, T. Wakasugi, H. Shiomi, and J. Nishii: Ion-exchange-induced phase separation and preparation of porous glass. Chem. Lett. 39, 824 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    J.E. Shelby: Introduction to Glass Science and Technology, 2nd ed. (The Royal Society of Chemistry, Cambridge, United Kingdom, 2005), p. 158.

    Google Scholar 

  8. 8.

    M. Yamane, S. Shibata, A. Yasumori, T. Yano, and H. Takada: Structural evolution during Ag+/Na+ ion exchange in a sodium silicate glass. J. Non-Cryst. Solids 203, 268 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    M.D. Ingram, J.E. Davidson, A.M. Coats, E.I. Kamitsos, and J.A. Kapoutsis: Origins of anomalous mixed-alkali effects in ion-exchanged glasses. Glastech. Ber. Glass Sci. Technol. 73, 89 (2000).

    CAS  Google Scholar 

  10. 10.

    M.D. Ingram, M-H. Wu, A. Coats, E.I. Kamitsos, C-P.E. Varsamis, N. Garcia, and M. Sola: Evidence from infrared spectroscopy of structural relaxation during field assisted and chemically driven ion exchange in soda-lime-silica glasses. Phys. Chem. Glasses 46, 84 (2005).

    CAS  Google Scholar 

  11. 11.

    T. Yazawa, K. Kuraoka, and W-F. Du: Effect of cooling rate on pore distribution in quenched sodium borosilicate glasses. J. Phys. Chem. B 103, 9841 (1999).

    CAS  Article  Google Scholar 

  12. 12.

    T. Yazawa, K. Kuraoka, T. Akai, N. Umesaki, and W-F. Du: Clarification of phase separation mechanism of sodium borosilicate glasses in early state by nuclear magnetic resonance. J. Phys. Chem. B 104, 2109 (2000).

    CAS  Article  Google Scholar 

  13. 13.

    L-S. Du and J.F. Stebbins: Nature of silicon-boron mixing in sodium borosilicate glasses: A high-resolution 11B and 17O NMR study. J. Phys. Chem. B 107, 10063 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    L-S. Du and J.F. Stebbins: Solid-state NMR study of metastable immiscibility in alkali borosilicate glasses. J. Non-Cryst. Solids 315, 239 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    D. Chen, H. Miyoshi, H. Masui, T. Akai, T. Yazawa: NMR study of structural changes of alkali borosilicate glasses with heat treatment. J. Non-Cryst. Solids 345, 104 (2004).

    Article  Google Scholar 

  16. 16.

    K. Saiki, S. Sakida, Y. Benino, and T. Nanba: Phase separation of borosilicate glass containing sulfur. J. Ceram. Soc. Jpn. 118, 603 (2010).

    CAS  Article  Google Scholar 

  17. 17.

    C. Martineau, V.K. Michaelis, S. Schuller, and S. Kroeker: Liquid-liquid phase separation in model nuclear waste glasses: A solid-state double-resonance NMR study. Chem. Mater. 22, 4896 (2010).

    CAS  Article  Google Scholar 

  18. 18.

    H.P. Hood and M.E. Nordberg: Treated borosilicate glass. U.S. Patent, 2106744 (1938).

    Google Scholar 

  19. 19.

    M. Nordberg: Properties of some vycor-brand glass. J. Am. Ceram. Soc. 27, 299 (1944).

    CAS  Article  Google Scholar 

  20. 20.

    T. Yazawa: Present status and future potential of preparation of porous glass and its application. Key Eng. Mater. 115, 125 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    T. Yazawa, H. Tanaka, K. Eguchi, and S. Yokoyama: Novel alkali-resistant porous glass prepared from a mother glass based on the SiO2-B2O3-RO-ZrO2 (R=Mg, Ca, Sr, Ba and Zn) system. J. Mater. Sci. 29, 3433 (1994).

    CAS  Article  Google Scholar 

  22. 22.

    D. Enke, F. Janowski, and W. Schwieger: Porous glasses in the 21st century—a short review. Microporous Mesoporous Mater. 60, 19 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    M. Suzuki and T. Tanaka: Materials design for the fabrication of porous glass using phase separation in multi-component borosilicate glass. ISIJ Int. 48, 1524 (2008).

    CAS  Article  Google Scholar 

  24. 24.

    L. Yang, M. Yamashita, and T. Akai: Green and red high-silica luminous glass suitable for near- ultraviolet excitation. Opt. Express 17, 6688 (2009).

    CAS  Article  Google Scholar 

  25. 25.

    C. Nimjaroen, S. Morimoto, and C. Tangsathitkulichai: Preparation and properties of porous glass using fly ash as a raw material. J. Non-Cryst. Solids 355, 1737 (2009).

    CAS  Article  Google Scholar 

  26. 26.

    T. Araki, Y. Daiko, A. Mineshige, M. Kobune, N. Toyoda, I. Yamada, and T. Yazawa: First-principles calculation and proton transfer in TiO2-modified porous glass. J. Am. Ceram. Soc. 93, 127 (2010).

    CAS  Article  Google Scholar 

  27. 27.

    S. Minamiyama, Y. Daiko, A. Mineshige, M. Kobune, and T. Yazawa: Spinodal-type phase separation and proton conductivity of Al2O3-doped porous glasses. J. Ceram. Soc. Jpn. 118, 1131 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was carried out in Next-generation Nanostructured Photonic Device and Process Technology as part of Program to Create an Innovative Components Industry supported by New Energy and Industrial Technology Development Organization. One of the authors (K. K.) is also grateful for the financial support from Murata Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kohei Kadono.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hattori, Y., Wakasugi, T., Shiomi, H. et al. Li+ for Na+ ion-exchange-induced phase separation in borosilicate glass. Journal of Materials Research 27, 999–1005 (2012). https://doi.org/10.1557/jmr.2012.33

Download citation

Keywords

  • Diffusion
  • Porosity
  • Microstructure