Surfactant-assisted reflux synthesis of PbS nanostructures and their properties

Abstract

Uniform PbS nanostructures with varied morphology have been synthesized by a surfactant-assisted reflux route. ZnS and CdS layers were successfully coated onto PbS nanocrystals by encapsulation or epitaxial growth. The nanocrystals were characterized by x-ray diffraction, (high-resolution) transmission electron microscopy, selected area electron diffraction, and scanning electron microscopy. The truncated cubic nanostructures displayed a symmetric emission band at about 860 nm. Diffuse reflectance infrared (IR) spectroscopy was measured to estimate the band gap. High temperature and high frequency measurements of impedance and permittivity taught that the samples were stable and showed collateral evidence of the existence of epitaxial layers. Measurements illustrate that the luminescent properties of semiconductor PbS nanostructures are closely related to their surface nature, and encapsulation can affect their electrical properties and photoluminescence performance greatly. The study may prove useful in developing high frequency IR sensors and light signal amplification devices.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

REFERENCES

  1. 1.

    J.L. Machol, F.W. Wise, R.C. Patel, and D.B. Tanner: Vibronic quantum beats in PbS microcrystallites. Phys. Rev. B: Condens. Matter 48, 2819 (1993).

    CAS  Article  Google Scholar 

  2. 2.

    I. Kang and F.W. Wise: Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B: Opt. Phys. 14, 1632 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    J.M. Luther, J. Gao, M.T. Lloyd, O.E. Semonin, M.C. Beard, and A.J. Nozik: The influence of hydrazine hydrate on the photoconductivity of PbS thin film. Adv. Mater. 22, 3704 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    C. Wadia, A.P. Aalivisatos, and D.M. Kammen: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    M.S. Ghamsari, M.K. Araghi, and S.J. Farahani: The influence of hydrazine hydrate on the photoconductivity of PbS thin film. Mater. Sci. Eng., B 133, 113 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    L. Raniero, C.L. Ferreira, L.R. Cruz, A.L. Pinto, and R.M.P. Alves: Photoconductivity activation in PbS thin films grown at room temperature by chemical bath deposition. Physica B 405, 1283 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    E.M. Larramendi, O. Calzadillaa, A. Gonzalez-Arias, E. Hernandeza, and J. Ruiz-Garcia: Effect of surface structure on photosensitivity in chemically deposited PbS thin films. Thin Solid Films 389, 301 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    E. Theocharous: Absolute linearity measurements on a PbS detector in the infrared. Appl. Opt. 45, 2381 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker: Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng. 37, 101 (2002).

    Article  Google Scholar 

  10. 10.

    A.L. Rogach, A. Eychmüller, S.G. Hickey, and S.V. Kershaw: Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 3, 536 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    M.S. Neo, N. Venkatram, G.S. Li, W.S. Chin, and J. Wei: Size-dependent optical nonlinearities and scattering properties of PbS nanoparticles. J. Phys. Chem. C 113, 19055 (2009).

    CAS  Article  Google Scholar 

  12. 12.

    S. Johnsen, J. He, J. Androulakis, V.P. Dravid, I. Todorov, D.Y. Chung, and M.G. Kanatzidis: Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 133, 3460 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    M.A. Hines and G.D. Scholes: Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    M.S. Neo, N. Venkatram, G.S. Li, W.S. Chin, and J. Wei: Synthesis of PbS/CdS core-shell QDs and their nonlinear optical properties. J. Phys. Chem. C 114, 18037 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    G.S. Paul and P. Agarwal: Structural, optical and thermal studies on PbS nanocubes. Phys. Status Solidi C 7, 905 (2010).

    CAS  Google Scholar 

  16. 16.

    A.H. Souici, N. Keghouche, J.A. Delaire, H. Remita, A. Etcheberry, and M. Mostafavi: Structural and optical properties of PbS nanoparticles synthesized by the radiolytic method. J. Phys. Chem. C 113, 8050 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    A. Kumar and A. Jakhmola: RNA-mediated fluorescent Q-PbS nanoparticles. Langmuir 23, 2915 (2007).

    CAS  Article  Google Scholar 

  18. 18.

    D. Yu, Y. Chen, B. Li, and X. Chen: Nanocubes of PbS with visible luminescence synthesized by sulfonated polymer as stabilizer and modifier at room-temperature. Mater. Lett. 63, 2317 (2009).

    CAS  Article  Google Scholar 

  19. 19.

    S. Acharya, U.K. Gautam, T. Sasaki, Y. Bando, Y. Golan, and K. Ariga: Ultra narrow PbS nanorods with intense fluorescence. J. Am. Chem. Soc. 130, 4594 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    B.R. Hyun, A.C. Bartnik, L. Sun, T. Hanrath, and F.W. Wise: Control of electron transfer from lead-salt nanocrystals to TiO2. Nano Lett. 11, 2126 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    A.A. Patel, F. Wu, J.Z. Zhang, C.L. Torres-Martinez, R.K. Mehra, Y. Yang, and S.H. Risbud: Synthesis, optical spectroscopy and ultrafast electron dynamics of PbS nanoparticles with different surface capping. J. Phys. Chem. B 104, 11598 (2000).

    CAS  Article  Google Scholar 

  22. 22.

    F.W. Wise: Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 33, 773 (2000).

    CAS  Article  Google Scholar 

  23. 23.

    S.W. Clark, J.M. Harbold, and F.W. Wise: Resonant energy transfer in PbS quantum dots. J. Phys. Chem. C 111, 7302 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    Y.L. Pei and Y. Liu: Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. J. Alloys Compd. 514, 40 (2012).

    CAS  Article  Google Scholar 

  25. 25.

    S.F. Wang, F. Gu, and M.K. Lu: Solution-phase synthesis of spherical zinc sulfide nanostructures. Langmuir 22, 398 (2006).

    Article  Google Scholar 

  26. 26.

    G. Zhou, M. Lu, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang: Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. J. Phys. Chem. B 110, 6543 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    Y.H. Mi, X.B. Zhang, Z.G. Ji, H.Y. Zhu, S.M. Zhou, and H.L. Ni: Controllable synthesis and formation mechanism of spherical, cubic and hollow cubic PbS nanocrystals. Chin. J. Inorg. Chem. 25, 1563 (2009).

    CAS  Google Scholar 

  28. 28.

    T. Thongtema, S. Kaowphong, and S. Thongtem: Biomolecule and surfactant-assisted hydrothermal synthesis of PbS crystals. Ceram. Int. 34, 1691 (2008).

    Article  Google Scholar 

  29. 29.

    Y.C. Jiao, X.Y. Gao, J.X. Lu, Y.S. Chen, J.P. Zhou, and X.L. Li: A novel method for PbS quantum dot synthesis. Mater. Lett. 72, 116 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    K. Rajesh, P. Mukundan, P.K. Pillai, V.R. Nair, and K.G.K. Warrier: High-surface-area nanocrystalline cerium phosphate through aqueous sol-gel route. Chem. Mater. 16, 2700 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    Lange’s Handbook of Chemistry, edited by J.A. Dean, 15th ed. (McGraw Hill, New York, NY), pp. 7–67.

  32. 32.

    D.R. Lide: CRC Handbook of Chemistry and Physics, 90th ed. (CRC Press, Boca Raton, FL, 2010), pp. 8–120.

    Google Scholar 

  33. 33.

    J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, and X. Peng: Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    J. Wang, Y. Long, Y. Zhang, X. Zhong, and L. Zhu: Preparation of highly luminescent CdTe/CdS core/shell quantum dots. ChemPhysChem 10, 680 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    R.W. Waynant, I.K. Ilev, and I. Gannot: Mid-infrared laser applications in medicine and biology. Philos. Trans. R. Soc. London, Ser. A 359, 635 (2001).

    CAS  Article  Google Scholar 

  36. 36.

    H. Cheng, B. Huang, Y. Dai, X. Qin, X. Zhang, Z. Wang, and M. Jiang: Visible-light photocatalytic activity of the metastable Bi20TiO32 synthesized by a high-temperature quenching method. J. Solid State Chem. 182, 2274 (2009).

    CAS  Article  Google Scholar 

  37. 37.

    S. Kumar, T.P. Sharma, M. Zulfequar, and M. Husain: Characterization of vacuum evaporated PbS thin films. Physica B 325, 8 (2003).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by projects from National Science Foundation of China (Grant No. 50972081), the Chinese PLA Medical Science and Technique Foundation (Grant No. CWS11J243), Independent Innovation Foundation of Shandong University (Grant No. IIFSDU 2011JC024), and the 111 Project (Grant No. B06017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guangjun Zhou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhou, H., Zhou, G., Du, Q. et al. Surfactant-assisted reflux synthesis of PbS nanostructures and their properties. Journal of Materials Research 27, 2916–2924 (2012). https://doi.org/10.1557/jmr.2012.339

Download citation