Abstract
Uniform PbS nanostructures with varied morphology have been synthesized by a surfactant-assisted reflux route. ZnS and CdS layers were successfully coated onto PbS nanocrystals by encapsulation or epitaxial growth. The nanocrystals were characterized by x-ray diffraction, (high-resolution) transmission electron microscopy, selected area electron diffraction, and scanning electron microscopy. The truncated cubic nanostructures displayed a symmetric emission band at about 860 nm. Diffuse reflectance infrared (IR) spectroscopy was measured to estimate the band gap. High temperature and high frequency measurements of impedance and permittivity taught that the samples were stable and showed collateral evidence of the existence of epitaxial layers. Measurements illustrate that the luminescent properties of semiconductor PbS nanostructures are closely related to their surface nature, and encapsulation can affect their electrical properties and photoluminescence performance greatly. The study may prove useful in developing high frequency IR sensors and light signal amplification devices.
This is a preview of subscription content, access via your institution.








REFERENCES
- 1.
J.L. Machol, F.W. Wise, R.C. Patel, and D.B. Tanner: Vibronic quantum beats in PbS microcrystallites. Phys. Rev. B: Condens. Matter 48, 2819 (1993).
- 2.
I. Kang and F.W. Wise: Electronic structure and optical properties of PbS and PbSe quantum dots. J. Opt. Soc. Am. B: Opt. Phys. 14, 1632 (1997).
- 3.
J.M. Luther, J. Gao, M.T. Lloyd, O.E. Semonin, M.C. Beard, and A.J. Nozik: The influence of hydrazine hydrate on the photoconductivity of PbS thin film. Adv. Mater. 22, 3704 (2010).
- 4.
C. Wadia, A.P. Aalivisatos, and D.M. Kammen: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009).
- 5.
M.S. Ghamsari, M.K. Araghi, and S.J. Farahani: The influence of hydrazine hydrate on the photoconductivity of PbS thin film. Mater. Sci. Eng., B 133, 113 (2006).
- 6.
L. Raniero, C.L. Ferreira, L.R. Cruz, A.L. Pinto, and R.M.P. Alves: Photoconductivity activation in PbS thin films grown at room temperature by chemical bath deposition. Physica B 405, 1283 (2010).
- 7.
E.M. Larramendi, O. Calzadillaa, A. Gonzalez-Arias, E. Hernandeza, and J. Ruiz-Garcia: Effect of surface structure on photosensitivity in chemically deposited PbS thin films. Thin Solid Films 389, 301 (2001).
- 8.
E. Theocharous: Absolute linearity measurements on a PbS detector in the infrared. Appl. Opt. 45, 2381 (2006).
- 9.
P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker: Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng. 37, 101 (2002).
- 10.
A.L. Rogach, A. Eychmüller, S.G. Hickey, and S.V. Kershaw: Infrared-emitting colloidal nanocrystals: Synthesis, assembly, spectroscopy, and applications. Small 3, 536 (2007).
- 11.
M.S. Neo, N. Venkatram, G.S. Li, W.S. Chin, and J. Wei: Size-dependent optical nonlinearities and scattering properties of PbS nanoparticles. J. Phys. Chem. C 113, 19055 (2009).
- 12.
S. Johnsen, J. He, J. Androulakis, V.P. Dravid, I. Todorov, D.Y. Chung, and M.G. Kanatzidis: Nanostructures boost the thermoelectric performance of PbS. J. Am. Chem. Soc. 133, 3460 (2011).
- 13.
M.A. Hines and G.D. Scholes: Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15, 1844 (2003).
- 14.
M.S. Neo, N. Venkatram, G.S. Li, W.S. Chin, and J. Wei: Synthesis of PbS/CdS core-shell QDs and their nonlinear optical properties. J. Phys. Chem. C 114, 18037 (2010).
- 15.
G.S. Paul and P. Agarwal: Structural, optical and thermal studies on PbS nanocubes. Phys. Status Solidi C 7, 905 (2010).
- 16.
A.H. Souici, N. Keghouche, J.A. Delaire, H. Remita, A. Etcheberry, and M. Mostafavi: Structural and optical properties of PbS nanoparticles synthesized by the radiolytic method. J. Phys. Chem. C 113, 8050 (2009).
- 17.
A. Kumar and A. Jakhmola: RNA-mediated fluorescent Q-PbS nanoparticles. Langmuir 23, 2915 (2007).
- 18.
D. Yu, Y. Chen, B. Li, and X. Chen: Nanocubes of PbS with visible luminescence synthesized by sulfonated polymer as stabilizer and modifier at room-temperature. Mater. Lett. 63, 2317 (2009).
- 19.
S. Acharya, U.K. Gautam, T. Sasaki, Y. Bando, Y. Golan, and K. Ariga: Ultra narrow PbS nanorods with intense fluorescence. J. Am. Chem. Soc. 130, 4594 (2008).
- 20.
B.R. Hyun, A.C. Bartnik, L. Sun, T. Hanrath, and F.W. Wise: Control of electron transfer from lead-salt nanocrystals to TiO2. Nano Lett. 11, 2126 (2011).
- 21.
A.A. Patel, F. Wu, J.Z. Zhang, C.L. Torres-Martinez, R.K. Mehra, Y. Yang, and S.H. Risbud: Synthesis, optical spectroscopy and ultrafast electron dynamics of PbS nanoparticles with different surface capping. J. Phys. Chem. B 104, 11598 (2000).
- 22.
F.W. Wise: Lead salt quantum dots: The limit of strong quantum confinement. Acc. Chem. Res. 33, 773 (2000).
- 23.
S.W. Clark, J.M. Harbold, and F.W. Wise: Resonant energy transfer in PbS quantum dots. J. Phys. Chem. C 111, 7302 (2007).
- 24.
Y.L. Pei and Y. Liu: Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. J. Alloys Compd. 514, 40 (2012).
- 25.
S.F. Wang, F. Gu, and M.K. Lu: Solution-phase synthesis of spherical zinc sulfide nanostructures. Langmuir 22, 398 (2006).
- 26.
G. Zhou, M. Lu, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, and S. Wang: Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. J. Phys. Chem. B 110, 6543 (2006).
- 27.
Y.H. Mi, X.B. Zhang, Z.G. Ji, H.Y. Zhu, S.M. Zhou, and H.L. Ni: Controllable synthesis and formation mechanism of spherical, cubic and hollow cubic PbS nanocrystals. Chin. J. Inorg. Chem. 25, 1563 (2009).
- 28.
T. Thongtema, S. Kaowphong, and S. Thongtem: Biomolecule and surfactant-assisted hydrothermal synthesis of PbS crystals. Ceram. Int. 34, 1691 (2008).
- 29.
Y.C. Jiao, X.Y. Gao, J.X. Lu, Y.S. Chen, J.P. Zhou, and X.L. Li: A novel method for PbS quantum dot synthesis. Mater. Lett. 72, 116 (2012).
- 30.
K. Rajesh, P. Mukundan, P.K. Pillai, V.R. Nair, and K.G.K. Warrier: High-surface-area nanocrystalline cerium phosphate through aqueous sol-gel route. Chem. Mater. 16, 2700 (2004).
- 31.
Lange’s Handbook of Chemistry, edited by J.A. Dean, 15th ed. (McGraw Hill, New York, NY), pp. 7–67.
- 32.
D.R. Lide: CRC Handbook of Chemistry and Physics, 90th ed. (CRC Press, Boca Raton, FL, 2010), pp. 8–120.
- 33.
J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, and X. Peng: Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567 (2003).
- 34.
J. Wang, Y. Long, Y. Zhang, X. Zhong, and L. Zhu: Preparation of highly luminescent CdTe/CdS core/shell quantum dots. ChemPhysChem 10, 680 (2009).
- 35.
R.W. Waynant, I.K. Ilev, and I. Gannot: Mid-infrared laser applications in medicine and biology. Philos. Trans. R. Soc. London, Ser. A 359, 635 (2001).
- 36.
H. Cheng, B. Huang, Y. Dai, X. Qin, X. Zhang, Z. Wang, and M. Jiang: Visible-light photocatalytic activity of the metastable Bi20TiO32 synthesized by a high-temperature quenching method. J. Solid State Chem. 182, 2274 (2009).
- 37.
S. Kumar, T.P. Sharma, M. Zulfequar, and M. Husain: Characterization of vacuum evaporated PbS thin films. Physica B 325, 8 (2003).
ACKNOWLEDGMENTS
This work was supported by projects from National Science Foundation of China (Grant No. 50972081), the Chinese PLA Medical Science and Technique Foundation (Grant No. CWS11J243), Independent Innovation Foundation of Shandong University (Grant No. IIFSDU 2011JC024), and the 111 Project (Grant No. B06017).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhou, H., Zhou, G., Du, Q. et al. Surfactant-assisted reflux synthesis of PbS nanostructures and their properties. Journal of Materials Research 27, 2916–2924 (2012). https://doi.org/10.1557/jmr.2012.339
Received:
Accepted:
Published:
Issue Date: